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Microscopic Theory of Nonlinear Spin Waves in Ferromagnets∗
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Abstract Considering the attractive interaction between two magnons with opposite wave vectors in a Heisenberg

ferromagnet, we propose the model of magnon-pairs, which is suitable for low-temperature environment. A dressed

magnon is an energy quantum of the magnon-pairs whose energy is a monotonically increasing function of absolute

temperature. Based on the model, we re-investigate the excitation mechanism and thermodynamic properties of the

Heisenberg ferromagnet. The correction factor e(0) plays an important role in studying the low-temperature properties

of a ferromagnet.

PACS numbers: 75.50.Gg, 75.45.+j, 75.30.Ds, 75.60.Ej
Key words: ferromagnets, magnons, spin waves, magnetization

1 Introduction

Ferromagnet has always attracted the attention
of scientists because of it’s extensive applications to
superconductivity,[1−2] magnetoelectronic devices[3] and
so on. In solid, the Heisenberg model of spin-spin inter-
actions can be considered as the starting point for un-
derstanding the complex phenomena of a ferromagnet.
It is well known that quasiparticles play a fundamental
role in nature. In ferromagnet, elemental magnetic col-
lective excitations (magnons) are essential for explaining
magnetic ordering[4] and electron spin dynamics.[5] The
magnons are of great importance also for modern spin-
tronic devices.[6−9]

Bloch first researched the magnons in the Heisenberg
model of a simple ferromagnet. He had predicted the tem-
perature dependency of the magnetization at low tem-
peratures (Bloch’s T 3/2 law). In Bloch’s theory he as-
sumed that the number of magnons is so small that the
interaction between two or more magnons may be ne-
glected. In fact, researchers have always ignored the inter-
action between the magnons and paid more attention to
the interactions between magnons and phonons or other
quasiparticles,[10−13] especially to the magnon phonon
coupling[14] whose research may date back to 1970s.[15]

The interactions between the magnons had been first con-
sidered by Dyson.[16] After him, some other physicists also
began to consider this issue.[17−18] In Dyson’s theory he
defined two kinds of interactions: one is the kinematical
interaction. The other is the dynamical interaction, which
represents the nondiagonal part of the Hamiltonian in his
basic set of states.

In 1957, Bardeen Cooper and Schrieffer (BCS) pub-
lished the first truly microscopic theory of superconduc-
tivity. The theory was soon recognized to be correct in all
the essential aspect, and to correctly explain a number of

important experimental phenomena. We know an electron
tends to pull the positive ions towards itself, so that it is
surrounded by a region where the lattice is denser than
usual. Other electrons will be drawn towards the region.
It will look as if it was attracted towards the first elec-
tron. The magnons are the energy quanta of linear spin
waves, which can also be considered to attract to each
other like electrons. In this paper, we ignore the repulsive
interaction and only consider the attractive interaction be-
tween two magnons with opposite wave vectors k and −k.
The attractive interaction between the magnons leads to
bound magnon-pairs. The dressed magnons are the en-
ergy quanta of magnon-pairs whose energy is a monoton-
ically increasing function of absolute temperature. Based
on the model, we re-investigate the excitation mechanism
and some thermodynamic properties of the Heisenberg fer-
romagnet. We organize the paper as follows. In Sec. 2 we
introduce our model. In Sec. 3 we investigate the proper-
ties of the dressed magnon. Further the thermal excita-
tion process and thermodynamic properties of the system
are also investigated. Finally, we make a summary and
concluding remarks in Sec. 4.

2 Model and Theory

The ground state of a simple ferromagnet has all spins
parallel. Consider N spins each of magnitude S with
neighbor spins coupled by the Heisenberg interaction. The
Hamiltonian of the spin system can be written as

H = −J
∑

l,δ

Ŝl · Ŝl+δ , (1)

where J is the exchange integral, Ŝl is the angular momen-
tum of the spin at site rl and δ represents the distances
of the nearest lattices.

Now consider the excited state of the system, it can be
obtained by offering some energy to the spin system, for
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example, increasing the temperature of the system. When
a magnetic ion gets some energy from the outer, the an-
gular momentum of the spin of it will deviate from the
equilibrium position. Further, the spin deviation keeps
moving about through the lattice in a wave-like manner,
owing to the exchange interaction of all magnetic ions. If
we introduce the creation and annihilation operators â†

l

and âl of the spin deviation at site rl and write them as

âl =
√

N
∑

k

exp(ik · rl)b̂k ,

â†
l =

√
N

∑

k

exp(−ik · rl)b̂
†
k , (2)

using the Holstein–Primakoff transformation[19]

S+ = (
√

2S − â†â)â ,

S− = â†(
√

2S − â†â) , Sz = S − â†â , (3)

where Ŝ± is the spin-raising and spin-lowering operators
and satisfies the relation Ŝ± = Ŝx ± iŜy, the Hamiltonian

of the system can be obtained in terms of b̂†k and b̂k

H = E0 +
∑

k

~wkb̂†kb̂k

+
∑

k,k′,q

Vk,k′(q)b̂†k−q b̂†
k′+q

b̂k′ b̂k , (4)

where E0 = −JS2Nz is the energy of the ground state
of the system. z is the number of the nearest neighbors
of an ion. The operators b̂†k and b̂k are the creation and
annihilation operators of the linear spin-wave mode which
is quantized in unit

~wk = 2JSz(1− rk) , (5)

where rk is defined by

rk =
1

z

∑

δ 6=0

exp(ik · δ) .

The energy quanta ~wk of linear spin waves are called
free magnons, which are bosons. For simplicity, we al-
ways call them magnons. In fact, the ground state of the
system can be regarded as a Bose–Einstein condensation
(BEC) configuration of the magnons. We know the sys-
tem of magnons can be described in the context of the
grand canonical ensemble. One can easily evaluate the
total number of magnons

N =
∑

i

1

exp{(εi − µ)/kBT } − 1
, (6)

which can be written as the sum of the average occupation
numbers

n̄i =
1

exp{(εi − µ)/kBT} − 1
(7)

of each single-particle state. For the lowest single-particle
energy ε0, when T → 0 K the occupation number

N0 ≡ n̄0 =
1

exp{(ε0 − µ)/kBT} − 1
(8)

becomes increasingly large. At T = 0 K, the num-
ber of magnons in the condensate becomes macroscopic,

all magnons occur the lowest single-particle energy state
which is the zero-momentum state. As a result, the
ground state of a simple ferromagnet has all spins par-
allel. At low temperature, long-wave condition |k · δ| ≪ 1
can be taken. For |k · δ| ≪ 1

~wk ≈ 2JSa2k2 , (9)

for all three cubic lattices, where a is the lattice constant.
The third term in Eq. (4) describes the magnon-magnon
interaction. The interaction matrix element is given by

Vk,k′(q) = − Jz

2N
(2rk−q−k′ − rk−q − rk′) . (10)

Obviously, it can be negative, which represents the at-
tractive interaction between the magnons. The presence
of the attractive interaction has an inherent mechanism.
It leads to bound magnon-pairs which are stable only if
the two magnons have opposite wave vectors k and −k.
At low temperatures, we can ignore the repulsive inter-
action between the magnons and rewrite the Hamiltonian
as

H = E0 +
∑

k

~wkb̂kb̂†k +
∑

k,k′

Vk,k′ b̂†
k′ b̂

†

−k′ b̂kb̂−k , (11)

here,

Vk,k′ = − Jz

2N
(2rk+k′ − rk − rk′) . (12)

At low temperatures, taking the reasonable approxima-
tion rk+k′ ≈ rkrk′ and noting 2rk ≈ rk, Eq. (12) becomes
approximately

Vk,k′ ≈ −~wk~wk′

8NJS2z
, (13)

where ~wk ≈ 2JSa2k2 and k takes all possible values of
the k space.

Within the framework of a mean-field theory[20]

b̂†kb̂†−k ≈ 〈b̂†kb̂†−k〉T , b̂kb̂−k ≈ 〈b̂kb̂−k〉T , (14)

the Hamiltonian of the system becomes approximately

H ≈ 1

2

∑

k

~wk(b†kbk + b†−kb−k)

+
∑

k,k′

Vk,k′{b†
k′b

†
−k′〈b̂†kb̂†−k〉T

+ b̂kb̂−k〈b̂†k′ b̂
†
−k′〉T − 〈b̂kb̂−k〉T 〈b̂†k′ b̂

†
−k′〉T , (15)

where the energy of the ground state of the system is ig-
nored. Introducing the definitions

∆ =
∑

k

α~wk〈b̂kb̂−k〉T , ∆∗ =
∑

k

α~wk〈b̂†kb̂†−k〉T , (16)

the Hamiltonian of the system has the form

H =
1

2

∑

k

hwk(b̂†kb̂k + b̂†−kb̂−k)

+ ∆
∑

k

~wk(b̂†kb̂†−k + b̂kb̂−k) − ∆2/α , (17)

where ∆ satisfies the relation ∆ = ∆∗ = |∆| and α is given
by α = −1/8NJS2z. Bogoliubov’s method of making a
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canonical transformation of the set, b̂†k and b̂k, to new cre-
ation and annihilation operators is suitable for our model.
For simplicity let us drop the spin indices and write

b̂k = µkĉk − νkĉ†−kb̂†k = µkĉ†k − νkĉ−k ,

b̂−k = µkĉ−k − νkĉ†kb̂†−k = µkĉ†−k − νkĉk , (18)

where the coefficients µk and νk satisfy the following equa-
tion

µ2
k − ν2

k = 1 , µ2
k + ν2

k = µkνk/∆ . (19)

Substituting the canonical transformation (18) into
Eq. (17), the Hamiltonian of the system is diagonalized
into

H = Es +
∑

k

~wke(T )ĉ†kĉk , (20)

where Es represents a metastable configuration and
~wke(T ) are the energy quanta of elementary excitations
of the system. The result has a deep physical meaning.
It shows that the original system of interacting particles
can be described in terms of a Hamitonian of independent
quasi-particles having energy ~wke(T ) and whose annihi-
lation and creation operators are given, respectively, by
ĉk and ĉ†k. We call the energy quanta ~wke(T ) dressed
magnons. The dressed magnons are also bosons.

3 Results and Discussions

The dressed magnons are also the energy quanta of
magnon-pairs of the spin system, which carry all the infor-
mation of the interaction between the magnons. The en-
ergy of a dressed magnon is determined by the correction
factor e(T ) which is a function of temperature T . Substi-
tuting the Bogoliubov’s transformation given in Eq. (18)
into Eq. (16), the correction factor e(T ) can be reduced
as

e(T ) = −α
∑

k

~wk(1 + 2〈ĉ†kĉk〉T ) . (21)

Since the dressed magnons obey Bose–Einstein statistics
one can obtain the average number of the dressed magnons
excited at temperature T with wave vector k

〈ĉ†kĉk〉T =
1

exp{~wke(T )/kBT } − 1
, (22)

where kB is the Boltzmann constant. At T = 0 K, there
is no thermal excitation, so the correction factor e(0) can
be written as

e(0) = −α
∑

k

~wk , (23)

which is very important for us to analyze the low-
temperature properties of a ferromagnet. In fact, at
T = 0 K the frequency of magnons can be confined within
the effective Debye cutoff frequency, which is given by
~w∗

D
≈ 6.58 × 102 meV. Casting Eq. (23) into integral

form, we can obtain

e(0) = −2

5
αβ(~w∗

D
)5/2 , (24)

where β is given by

β =
V

4π2

( 1

2JSa2

)3/2

.

At low temperatures, e(T ) ≈ e(0) and ~wk ≈ 2JSa2k2,
Eq. (22) can be written approximately as

〈ĉ†kĉk〉T ≈ 1

exp{2JSa2k2e(0)/kBT} − 1
. (25)

Obviously, the energy of dressed magnons is a mono-
tonically increasing function of temperature T , which is
equal to the energy of magnons at the critical tempera-
ture T0. In fact the critical temperature indeed has a deep
physical meaning. The repulsive interaction between the
magnons can be regarded as the result of random mo-
tion of magnons. The strength of it depends on the effec-
tive kinetic energy of magnons. The attractive interaction
comes from the lattice deformation. At low temperatures,
the effective kinetic energy of magnons is very small. As
a result, we can only consider the attractive interaction
between two magnons with opposite wave vectors k and
−k. The attractive interaction leads to bound magnon-
pairs. The repulsive interaction strengthens as the tem-
perature rises. At critical temperature T0, the magnons
will escape the bondage of attractive interaction and the
repulsive interaction between the magnons are dominant.
Consequently, at critical temperature T0 the magnon-pairs
disappear and all dressed magnons turn into magnons.
Substituting e(T0) = 1 into Eq. (18) we know the critical
temperature T0 satisfies the equation

1 = −α
∑

k

~wk coth~wk/2kBT0 . (26)

The total number of dressed magnons excited at tem-
perature T (T ≪ Tc) have the form

∑

k

〈ĉ†kĉk〉T = γT 3/2 , (27)

where Tc is the Curie temperature and γ is given by

γ =
{ V

4π2

( kB

2SJa2

)3/2
∫ ∞

0

x1/2

ex − 1
dx

}

e(0)−3/2 . (28)

Now consider the low-temperature magnetization of the
system, it should decrease as the temperature increases
according to the formula

NS
(M(0) − M(T )

M(0)

)

=
∑

k

〈ĉ†kĉk〉T = γT 3/2 , (29)

where M(0) is the saturation magnetization at T = 0 K.
Comparing with Bloch’s T 3/2 law[21]

NS
(M(0) − M(T )

M(0)

)

=
{ γ

e(0)−3/2

}

T 3/2 , (30)

which has not considered the interaction between the
magnons, we can find our result adds a correction factor
e(0)−3/2. The correction factor comes from the attractive
interactions between the magnons. Taking Fe crystal for
example, the parameters of it are as follow: S = 1, z = 8,
and J = 11.9 meV.[22] The correct factor of it is obtained
as e(0) = 0.64. According to Eqs. (29) and (30), the
relation between the fractional change of magnetization
∆M/M(0) and temperature T is shown in Fig. 1. From
Fig. 1, we can find that the influence of magnon-magnon
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interaction on the magnetization of the system becomes
more obvious as the temperature rises.

Fig. 1 The fractional change of magnetization of Fe
crystal as functions of temperature: the solid line refers
to our conclusion, which considers the interactions be-
tween the magnons, the dotted line is Bloch’s conclusion
which ignores the interactions.

The additional energy caused by the thermal excita-
tion of the system is

∆E(T ) =
∑

k

~wke(T )〈ĉ†kĉk〉T . (31)

At low temperature the additional energy can be reduced
as

∆E(T ) =
V

4π2

( 1

2JSa2e(0)

)3/2

Γ
(5

2

)

ζ
(5

2

)

(kBT )5/2 . (32)

The low-temperature specific heat capacity of the system
can be obtained from Eq. (29), which has the form

cm =
∂∆E(T )

∂T
= ζT 3/2 , (33)

where ζ is given by

ζ =
5V

8π2

( 1

2JSa2e(0)

)3/2

Γ
(5

2

)

ζ
(5

2

)5/2

k
5/2
B .

It should be noted that our model is not suitable for ferro-
magnets with low Curie temperature, like EuO. For them,
the repulsive interactions between the magnons can not be
ignored at low temperature.

4 Conclusion

In summary, considering the attractive interaction be-
tween two magnons with opposite wave vectors k and −k,
we establish the magnon-pair model for Heisenberg ferro-
magnet. We call the energy quanta of the magnon-pairs
dressed magnons whose energy monotonically increases as
the temperature rises. At critical temperature T0, the
magnon-pairs disappear and the dressed magnons all turn
into magnons. For T > T0, the repulsive interaction be-
tween the magnons is dominant. At low temperatures,
based on the model, we also investigate the fractional
change of magnetization and specific heat capacity of the
system. It is shown that our results add a correction fac-
tor e(0)−3/2, comparing the results without considering
the interactions between the magnons.
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