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Abstract
In this paper, we generalize the growing network model with preferential attachment for new
links to simultaneously include aging and initial attractiveness of nodes. The network evolves
with the addition of a new node per unit time, and each new node has m new links that with
probability Πi are connected to nodes i already present in the network. In our model, the
preferential attachment probability Πi is proportional not only to ki+ A, the sum of the old node
iʼs degree ki and its initial attractiveness A, but also to the aging factor t a-

i , where τi is the age of
the old node i. That is, ( )tP µ + a-k Ai i i . Based on the continuum approximation, we present a
mean-field analysis that predicts the degree dynamics of the network structure. We show that
depending on the aging parameter α two different network topologies can emerge. For α< 1, the
network exhibits scaling behavior with a power-law degree distribution P(k)∝ k− γ for large k
where the scaling exponent γ increases with the aging parameter α and is linearly correlated with
the ratio A/m. Moreover, the average degree k(ti, t) at time t for any node i that is added into the
network at time ti scales as ( ) µ b-k t t t,i i where 1/β is a linear function of A/m. For α> 1, such
scaling behavior disappears and the degree distribution is exponential.
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1. Introduction

The last two decades have witnessed the rapid development of
network science [1–3], with a growing number of scientific
researchers from various fields plunging into the investigation of
dynamics both of and on complex networks [4, 5]. The reason
why complex networks have become the focus of scientific
research is rooted in the fundamental understanding that many
complex systems of interacting individuals can be described by
networks [6, 7], in which nodes represent individuals and edges
(i.e. links or connections) that join pairs of nodes mimic the
interactions between the corresponding individuals.

It is well-known that one of the most important findings in
the area of network science is that many complex networks in
the real world exhibit a scale-free property [8–10] associated
with a power-law degree distribution [11, 12], meaning that the
probability P(k) for a randomly selected node to have k

connections approximately follows a power law, P(k)∝ k−γ,
with the exponent γ varying for different empirical networks
[13–18]. It is worth remarking that for many realistic networks
the degree distribution is not a perfect power law but rather a
right-skewed decay with an exponential cutoff [19, 20]. These
observations suggest that the connectivity of nodes in real net-
works is extremely heterogeneous, which is in sharp contrast
with the previous viewpoint by the random graph theory [21]
that the nodes are homogeneous and their degrees obey a
Poisson distribution where most degrees are close to the average
degree. To provide a mechanism explanation for the universality
of the power-law scaling behavior, Barabási and Albert pro-
posed a growing network model [13, 22] with two indispensable
ingredients—the growth and preferential attachment rules—
where, at each time step, a node is added into the network with a
certain number m of new links, each of which is connected to an
old node with a probability proportional to the old node’s
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degree. They obtained a perfect scale-free network with the
power-law exponent γ= 3 in the thermodynamic limit [22].

Since its publication, the pioneering work by Barabási
and Albert [13] has swiftly sparked a surge of interest in the
study of heterogeneous networks and a series of subsequent
evolution models of growing networks have been studied
[23–31]. Some variants of evolving network models are
focused on the preferential attachment rule [23, 24, 26,
29–31]. For example, the fitness-based preferential attach-
ment on the basis of ‘fit-get-richer’ principle [32, 33] has been
considered as an alternative rule for attracting new links from
newcomers to old nodes. Here, the fitness of a node is referred
to as an intrinsic trait (or property) of the node [34], such as
the innovation of a scientific paper or the personality of an
individual. In comparison with the ‘rich-get-richer’ principle
[33] (also known as the Matthew effect [35]) reflected by the
degree-based preferential attachment in the Barabási–Albert
model [13, 22], the fitness-based preferential attachment
model of growing networks assume that the old nodes with
large fitness values will have a larger probability to be
attached by the newly added nodes, that is, the fitter the node
is, the larger its degree will become [36].

In the literature, more general growing network models
have also been proposed in terms of combining the degree-
and fitness-based preferential attachment rules [33, 37]. For
example, Bianconi and Barabási [38] considered the prob-
ability of node i to attract new links from new nodes is pro-
portional to kiηi, where ki and ηi are the degree and fitness of
node i, respectively. It was shown that the probability dis-
tribution of node fitness ρ(η) plays an important role in
shaping the network structure [38]. Despite the success in
characterizing the diversity of intrinsic property of indivi-
duals, introducing the fitness distribution into the preferential
attachment network model has usually led to considerable
difficulty in model analysis [37, 39, 40]. A simplifying
approach for characterizing the intrinsic property of nodes is
to introduce the so-called initial attractiveness in the pre-
ferential attachment network growth models, as done in
[23, 37], where the initial attractiveness is assumed to be
time-invariant and thus usually denoted by a constant para-
meter A. In these models, the probability for new nodes to
connect an old one i is proportional to ki+ A, the sum of the
node iʼs degree ki and the initial attractiveness A.

Although very insightful, the above mentioned models
for network growth have largely neglected the fact that during
the growth of many real networks, aging of nodes occurs [19,
41–47]. For example, in scientific citation networks, old
papers will gradually loose attractiveness since they are no
longer sufficiently topical (or they are more often credited by
intermediate citations) [43, 44]. In the movie actor networks
[42], once popular stars are retiring from stage; while in the
World Wide Web old famous web sites will loose favor to
newly developed ones [48]. In view of these factors, it is of
great importance to study the network evolving model that
simultaneously account for the degree-dependent and initial
attractiveness-based preferential attachment rules as well as
the aging (or temporal) effects [45]. To this end, in this paper
we propose a growing network model with a generalized

preferential attachment rule that is based on degrees, initial
attractiveness, and ages of nodes. We show that the resulting
network has different structures depending on the initial
attractiveness and aging parameters.

The paper is outlined as follows. In section 2, we present
our preferential attachment model for network growth with
aging and initial attractiveness. In addition, the scaling
behavior of the average degree and the degree distribution of
the resulting network is analyzed. In section 3, we present the
numerical and simulation results with respect to different
parameters. We conclude the paper in section 4.

2. Preferential attachment network model with aging
and initial attractiveness

In order to simultaneously take into account the degree- and initial
attractiveness-based preferential linking as well as the aging
effect, we propose a generalized preferential attachment model for
the evolution of a growing network. Our model starts with a small
number (m0) of nodes without any connections among them.
Then, per unit time step, the network evolves as follows:

(i) Growth—A new node is added.
(ii) New links—The newly added node is preferentially

attached to m (m�m0) old nodes.
(iii) Preferential attachment—The probability Πi for each old

node i to be attached by the newly added node is
proportional not only to the sum of the degree ki and the
initial attractiveness Ai of node i but also to the power of its
age, t a-

i , where α is the aging parameter and τi is node iʼs
age. The choice of the power function t a-

i to characterize
the aging effect for old nodes is similar to the [41, 46, 47].
For simplicity, we assume an identical and constant initial
attractiveness, A, for all nodes, i.e. Ai≡A. Thus, the
preferential attachment probability to old node i is

( ) ( )tP µ + a-k A . 1i i i

Suppose each node i is added into the network at time ti,
then we can use the time tag ti to denote node i whose age
τi(t) at an arbitrary time t (t� ti) reads τi(t)= t− ti. Let k(ti, t)
denote the average degree of node i at time t. Following the
continuum approximation technique [13, 22], we obtain the
following mean-field equation
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with the boundary condition k(t, t)=m, which holds since
every newly added node has m links to old nodes. Integrating
both sides of equation (2) with respect to ti from 0 to t leads to
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one immediately has the equality

( ) ( )ò =k t t t mt, d 2 , 5
t

i i
0

which means the total degree of all nodes is twice the number
of links in the network.

The homogeneous form of equation (2) suggests that we
can seek a self-similar solution as a function of the single
variable ti/t rather than two separate variables

( ) ( ) ( )k= ºk t t x x t t, , . 6i i

Combining equations (5) and (6) gives rise to
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Performing the variable transformation on equation (2), we
obtain
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with κ(1)=m. Here, β is a constant to be determined. Solving
equation (8), we get
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For α< 1 the integration on the right hand side of
equation (9) can be taken as
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where 3F2( , , ; , ; ) is the hypergeometric function [49] and
H( · ) is the harmonic number which can be derived as

( ) ( ) ( )y g= + +H x x1 , 11E

with ( ) ( ( )) ( )
( )

y = G = G ¢
G

x xln
x

x

x

d

d
being the digamma function

and γE= 0.57721... the Euler-Mascheroni constant. Inserting
equation (10) into equation (9) leads to
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For x→ 0, we have κ(x)∝ x− β, that is, the constant β is the
exponent of the average degree such that for ti= t

( ) ( ) ( )µ b-k t t t t, . 13i i

This result implies that the average degree of old nodes
exhibits a power-law scaling behavior with exponent β.
Moreover, according to such scaling behavior of the average
degree given by equation (13), we can derive the degree
distribution P(k) of the network in a similar way to [22]. To
do this, suppose ( ) ( )= b-k t t C t t,i i where C(t)= Ct β with
some constant C. Consequently, the probability for a node to
have a degree equal to or smaller than k is

⎜ ⎟
⎛
⎝

⎡
⎣

⎤
⎦

⎞
⎠

( ( ) ) ( ) ( )=
b

 P k t t k P t
C t

k
, . 14i i

1

The probability on the right side of equation (14) is

determined by the probability density function f (ti) of the
random variable ti. To obtain the expression of f (ti), we make
the following assumption. Note that in our model each node is
added per unit time step and there are m0+ t nodes at time t
(including m0 nodes at the initial step). Assume that we add
each node at equal time intervals to the network. In the
continuous time limit, this is equivalent to assuming that the
entrance time ti is a random variable uniformly distributed in
the time window [0, m0+ t]. In fact this trick was originally
made in the classic Barabási–Albert scale-free network model
(see the statement for equation (8) in [22]). Therefore, under
the continuous limit the probability density of ti can be
approximated as
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f t
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Plugging equation (15) into equation (14) we have
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The probability density for P(k) can be obtained by
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As a result, as t→∞ , the degree distribution of the network
has a power-law scaling for large k (small ti):

( ) ( )g bµ º +g-P k k , 1 1 . 18

Obviously, the calculation of the value of the exponent β is
very important as it shapes the scaling behavior for both the
average degree and the degree distribution. For this purpose,
we obtain the following transcendental equation for β by
substituting equations (12) into (8):
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In the special case of α= 0 when the aging effect is removed,
it follows from equations (7) and (8) that

( )b =
+ A m

1

2
, 20

and hence

( )g = + A m3 . 21

Furthermore, when the initial attractiveness is set to zero,
A= 0, we have β= 1/2 and γ= 3, which recovers the result
of the Barabási–Albert model [13, 22].

In the more general case when α≠ 0, it is hard to derive
an analytic solution for β in the transcendental equation (8).
In fact, according to equation (10), the solution for β per-
taining to equation (19) exists only in the range−∞< α< 1.
Note that although only the case of α� 0 seems to be of
realistic significance, we also consider the case of α< 0 since
it does not cause any contradiction.
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3. Simulations

In order to verify our theoretical analysis, we perform
extensive stochastic simulations on our network model for
different parameter values.

In figure 1 we present the results of the average con-
nectivity k(ti, t) of node i versus its adding time ti at time
t= 104. All the results are obtained by averaging over 200
independent realizations of Monte Carlo stochastic simula-
tion. The observed linearity plotted in the log–log scale in all
the panels (a), (b) and (c) of figure 1 indicates that there is a
power-law scaling behavior ( ) µ b-k t t t,i i for 1� ti� 103,
supporting the theoretical prediction by equation (13). Spe-
cifically, as shown in figure 1(a) for A=m= 4, in case of
negative values of the aging parameter, i.e. α=−3, −2, −1,
the average degree k(ti, t) decays very quickly (with a rather
steep slope). On the other hand, when the aging parameter α
rises from zero to 0.3, and to 0.7, the average degree k(ti, t)
decays more and more slowly with a relatively smaller
exponent β (this can also be clarified in figure 2). Interest-
ingly, when the value of α becomes large enough, as shown
in figure 1(a) for α= 3, the average degree of node i tends to
be a constant k; 8 (with the power-law exponent β; 0)
irrespective of its age τi (i.e. independent of the entering time
ti of node i). In this situation, the decaying effect dominates
the preferential linking such that each new node is only
connected to the latest added m nodes. Therefore, each node
has on average a number k= 2m of connections, half of
which are connected to its latest m predecessors and the other
half are connected by its m subsequent newcomers. In
figure 1(b) we show the power-law decaying behavior of the
average degree k(ti, t) versus ti for various values of A= 0, 4,
8, 12 with m= 4 and α= 0.3. As the value of A rises
(equivalently, as the value of A/m rises), the power law
decays more and more slowly. That is, the larger the value of
A/m, the smaller value of the power exponent β (this can also
be shown in figure 2). Moreover, as illustrated in figure 1(c),
when we set A=m and change their values from 2 to 4, and
to 6, three parallel power-law curves are observed in the log–
log scale, suggesting the power exponent β is strongly
dependent on the ratio A/m, which is consistent to the
theoretical analysis given in equation (19).

In figure 2 we provide a full diagram for the dependence
of the power exponent β on the aging parameter α and the
ratio A/m. The lines in the plot represent the theoretical
results of β calculated by numerical integration from
equation (19) and the symbols with error bars correspond to
the average results with standard deviation obtained from
stochastic simulations. There is good agreement between
theory and simulation. For a fixed value of the ratio A/m, as
shown in each line, the power exponent β declines with α. In
particular, as the aging decaying effect becomes strong (large
α), the old node will loose the opportunity to accumulate
connections. As a result, the larger the value of α, the smaller
degree for old nodes (with small ti). More interestingly, as the
value of α approaches 1, all lines converges at the limit
β→ 0. On the other hand, for a given α< 1, the value of β
decreases with the increase of the value of the ratio A/m.

To exhibit a clearer scaling behavior for their relation-
ship, in figure 3 we redraw the results in terms of 1/β as a
function of the ratio A/m. The straight lines suggest that the

Figure 1. The average degree k(ti, t) of node i at time t= 104 as a function of node iʼs entering time ti for (a) different values of α with
A= m= 4 (from top to bottom, α=−3, −2, −1, 0, 0.3, 0.7, 3); (b) different values of A with m= 4 and α= 0.3 (from top to bottom, A= 0,
4, 8, 12); and (c) different values of m with A= m and α= 0.7 (from top to bottom, A= m= 2, 4, 6).

Figure 2.Dependence of the exponent β of the power law scaling for
the average degree ( ) µ b-k t t t,i i on the aging parameter α and the
ratio A/m. The lines are numerical solution of β obtained from
equation (19) while the symbols are the results averaged from
stochastic simulations (with error bars standing for standard
deviations). For the lines from top to bottom, the value of the ratio
A/m is set to 0, 1, 2, 3, 4, 5, and 6.
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reciprocal of the exponent β is a linear function of the ratio
A/m, i.e. = +

b
C CA

m

1
1 2, where C1 and C2 are coefficients

that depend on α. In the special case α= 0, we have C1= 1
and C2= 2 according to equation (20).

In figure 4 we present the simulation results of the degree
distribution of the resulting network of size N= 106 for dif-
ferent parameter settings. As shown in figure 4(a), in the
special case of α= 0 and A= 0, the degree distribution
obtained from simulation (marked by black squares) follows a
perfect power law, that is, we obtain a typical scale-free
network. In this case, there is no aging effect and initial
attractiveness, therefore our model is reduced to the classic
Barabási–Albert scale-free network model [13, 22], in which
the theoretical result of the degree distribution takes the form
P(k)= 2m2k−3 (see the green line). It is clear that the simu-
lation result agrees well with the theoretical outcome. In
figure 4(b) we show that in the case when the aging effect is
removed α= 0 and the initial attractiveness is included A= 4,
the degree distribution has a power-law scaling behavior
P(k)∝ k− γ for large degree k. Direct comparison between the
slope in the range k> 30 and the (pink dotted) guiding line
suggests that the simulation result of the scaling exponent is
in good agreement with the theoretical prediction γ= 5 by
equation (21). In figure 4(c) we depict the the simulation
results of degree distribution in the more general case when
both aging effect and initial attractiveness are considered. The
results show that when α< 1 the degree distribution scales as
a power law for large k. In particular, as the value of the aging
parameter α rises, the degree distribution becomes narrower
and the exponent γ increases correspondingly (also see
figure 5). On the other hand, when α is relatively large, the
model will generate exponential networks. The log-linear plot
in the inset of figure 4(c) shows that, for α= 1, 3, 5, the
degree distribution of the network decays exponentially when
k is greater than the average degree 〈k〉= 2m= 4.

In figure 5 we plot the scaling exponent γ of the degree
distribution P(k)∝ k− γ for large k versus the aging parameter
α for different values of A/m. Given the ratio A/m, the

exponent γ increases with the aging parameter α. In part-
icular, in the limit α→ 1, the exponent γ becomes extremely
large, meaning the network turns to be an exponential rather
than a power-law network. This is in consistency with the
simulation results given in figure 4(c). In addition, for any
given α< 1, the exponent γ increases with the ratio A/m.
Moreover, we demonstrate in figure 6 that the scaling expo-
nent γ is linearly dependent on the ratio A/m. In fact, as
illustrated in figure 3, the reciprocal of exponent β is linearly
correlated with A/m, i.e. b = +C C1 A

m1 2. Then the rela-
tionship γ= 1+ 1/β by equation (18) indicates that the
exponent γ is also a linear function of the ratio A/m, namely,

( )g = + +C C 1A

m1 2 , which takes the form γ= 3+ A/m
[equation (21)] for α= 0. If we further assume A= 0, then we
reproduce the scaling exponent γ= 3 discovered in the Bar-
abási–Albert scale-free network model [13, 22].

4. Conclusion

In this paper, we have studied a generalized growing model
that integrates the aging effects into the preferential linking
mechanism. In our model, the probability for newly added
nodes to attach to an old node is not only proportional to the
sum, k+ A, of the degree k and initial attractiveness A of the
old node but also proportional to an aging factor that is
defined as a decaying function in terms of the age of the old
node with an aging parameter, α. This preferential attachment
rule is defined to account for the fact that the higher con-
nectivity, the larger initial attractiveness, and the smaller age a
node has, the higher probability for it to be attached to.
Through continuous approximation and mean-field analysis,
we have uncovered the scaling behavior for both the average
connectivity and the degree distribution of the resulting net-
work. The results from both theory and simulations have
shown that for the region α< 1, the average connectivity
k(ti, t) of a node i (that is added into the network at time ti) at
the current time t scales as a power law ( ) µ b-k t t t,i i ,
especially when ti= t. In addition, in the limit of large degree
k, the degree distribution also scales as a power law
P(k)∝ k− γ with the scaling exponent γ= 1+ 1/β. More
interestingly, we have found that the scaling exponents β and
γ are both a linear function of the ratio, A/m, of the initial
attractiveness A to the number m of emanating links from
each new node.

It is worth mentioning that in the same direction as the
present work, Sun et al [50] have recently developed a more
generalized preferential attachment network model with
degree, fitness and aging. In their model, the general fitness
distribution (rather than initial attractiveness) is included to
account for the ‘fit-get-richer’ principle. Their work focused
on the time-invariant degree growth of network nodes; in
contrast, the focus of our work is to uncover the scaling
behavior of the average degree and the degree distribution
when the network growth is subject to preferential attachment
with initial attractiveness and aging effect.

Figure 3. The reciprocal of the exponent β of the power law scaling
for the average degree ( ) µ b-k t t t,i i as a function of the ratio A/m
for various values of the aging parameter α. From bottom to top, the
value of α is set to −2, −1, −0.5, 0, 2, 4, 6, 7 and 8.
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displays the degree distribution for different values of the aging parameter α when A= 4 and m= 2.

Figure 5. The scaling exponent γ of power-law degree distribution
P(k)∝ k− γ in the limit of large k as a function of the aging parameter
α for various values of the ratio A/m. From bottom to top, the value
of A/m is set to 0, 1, 2, 3, 4, 5 and 6. Lines are numerical solution
obtained from equations (18) and (19) and symbols are average
results of stochastic simulations (with error bars standing for
standard deviations).
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