ChiraESymmetry Breaking in (1+l)-Dimensional Lattice Gauge Theories

Xiang-Qian LUO

理论物理通讯 ›› 1991, Vol. 16 ›› Issue (4) : 505-508.

PDF(197 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(197 KB)
理论物理通讯 ›› 1991, Vol. 16 ›› Issue (4) : 505-508.

ChiraESymmetry Breaking in (1+l)-Dimensional Lattice Gauge Theories

  • Xiang-Qian LUO
作者信息 +

ChiraESymmetry Breaking in (1+l)-Dimensional Lattice Gauge Theories

  • Xiang-Qian LUO
Author information +
文章历史 +

摘要

The (1+1)-dimensional Hamiltonian lattice gauge theories and the Mcuum structure with fermions are studied analytically by using a unitary transformation and the variational method. The matching of the φφ operators in the continuum and on the lattice is discussed. The chiral symmetry is shown to be broken spontaneously. The effect of species doubling is also analyzed. Satisfactory scaling behavior for the chiral order parameter and coincidence with the continuum predictions are obtained.

Abstract

The (1+1)-dimensional Hamiltonian lattice gauge theories and the Mcuum structure with fermions are studied analytically by using a unitary transformation and the variational method. The matching of the φφ operators in the continuum and on the lattice is discussed. The chiral symmetry is shown to be broken spontaneously. The effect of species doubling is also analyzed. Satisfactory scaling behavior for the chiral order parameter and coincidence with the continuum predictions are obtained.

引用本文

导出引用
Xiang-Qian LUO. ChiraESymmetry Breaking in (1+l)-Dimensional Lattice Gauge Theories[J]. 理论物理通讯, 1991, 16(4): 505-508
Xiang-Qian LUO. ChiraESymmetry Breaking in (1+l)-Dimensional Lattice Gauge Theories[J]. Communications in Theoretical Physics, 1991, 16(4): 505-508

参考文献

[1] W. Marciano and H. Pagels, Phys. Rep. 36C(1978)137; and references therein.

[2] Q.Z. Chen and X.Q. Luo, Phys. Rev. D43(1990)1293.

[3] X.Q. Luo and Q.Z. Chen, J. Phys. G16(1990)1181.

[4] X.Q. Luo, B.P. He, Q.Z. Chen and S.H. Guo, Z. Phys. C51(1991)423.

[5] Q.Z. Chen, W.H. Zheng, X.Q. Luo and X.Y. Fang, High Energy Phys. Nucl. Phys. 16(1991)23.

[6] X.Q. Luo, Q.Z. Chen and S.H. Guo, High Energy Phya. Nucl. Phys. 13(1989)328.

[7] Q.Z. Chen, X.Q. Luo and S.H. Guo, Acta Sci. Nat. Univ. Sunyatseni 28(1989)96.

[8] X.Q. Luo, Q.Z. Chen and S.H. Guo, Z. Phys. C47(1990)635.

[9] X.Q. Luo and Q.Z. Chen, UCSB preprint NSF-ITP-90-212 (to be published).

[10] Q.Z. Chen, X.Y. Fang, G.C. Xu, J.M. Liu and X.Q. Luo, High Energy Phya. Nucl. Phys. 16(1991)518.

[11] X.Y. Fang, X.Q. Luo, G.C. Xu and Q.Z. Chen, J. Phys. G (to be published).

[12] X.Q. Luo, Z. Phys. C48(1990)283.

[13] J. Kogut, Rev. Mod. Phys. 56(1983)775.

[14] C. Hamer, J. Kogut, D. Crewther and M. Mazzolini, Nucl. Phys. B208(1982)413.

[15] T. Grandou, H.T. Cho and H.M. Fried, Phys. Rev. D37(1988)946.

基金

The project supported in part by the U.S. National Science Foundation under Grant No. PHY89-04035.


PDF(197 KB)

1040

Accesses

0

Citation

Detail

段落导航
相关文章

/