According to the Riemann-Roch theorem, we construct bases H-n(i) and N-m(f), for the meromorphic λ = -1 and λ = -1/2 differentials on the Riemann sphere S2. The dual bases, A-n(i), and D-m(j), of these meromorphic λ differentials on Cr curves are defined. Expanding the component fields TB(z) and TF(z) of the stress-energy tensor T(z) in the superconformal field theory by the dual bases A-n(i), and D-m(j), respectively, we obtain a series of expanding coefficients. The commutation relations among these coefficients are given explicitly, which,is just the multi-pole Neveu-Schwarz algebra with central extensions on the Riemann supersphere S. Physical implics tions of the algebra are also discussed.
Abstract
According to the Riemann-Roch theorem, we construct bases H-n(i) and N-m(f), for the meromorphic λ = -1 and λ = -1/2 differentials on the Riemann sphere S2. The dual bases, A-n(i), and D-m(j), of these meromorphic λ differentials on Cr curves are defined. Expanding the component fields TB(z) and TF(z) of the stress-energy tensor T(z) in the superconformal field theory by the dual bases A-n(i), and D-m(j), respectively, we obtain a series of expanding coefficients. The commutation relations among these coefficients are given explicitly, which,is just the multi-pole Neveu-Schwarz algebra with central extensions on the Riemann supersphere S. Physical implics tions of the algebra are also discussed.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] A.A. Belavin, A.M. Polaykov and A.B. ZamolodchikovN, ucl. Phys. B341(1984)333; D. Friedan, Z. Qiu and S.H. Shenker, Phys. Rev. Lett. 63(1984)1575; V.G. Knizhnik and A.B. Zamolodchikov, Nucl. Phys. B347(1984)83; D. Friedan and S.H. Shenker, Nucl. Phys. B381(1987)509; G. Anderson and G. Moore, Commun. Math. Phys. 117(1988)441; C. Vafa, Phys. Lett. B306(1988)421; G. Moore and N. Seiberg, Commun. Math. Phys. 133(1989)177.
[2] A.M. Zamlodchikov, Theor. Math. Phys. 65(1986)1205; V.A. Fateev and A.M. Zamlodchikov, Nucl. Phys. B380[FS18](1987)644.
[3] P. Bouwknegt, Phys. Lett. B307(1988)295; M. Takao, Phys. Lett. B309(1988)247; Q. Ho-Kim and H.B. Zheng, Phys. Lett. B313(1988)71; F.A. Baia, P. Bouwknegt and M. Surridge, Nucl. Phys. B304(1988)348, 371; D.H. Zhang, phis. Lett. B332(1989)323.
[4] H.Y. Guo, J.S. Na, J.M. Shen, S.K. Wang and Q.H. Yu, The Algebra of Meromorphic Vector Ficl& and Its Realization on the Spaces of Meromorphic A-Differentials on Riemann Surfaces (I), preprint ASITP-8410, to appear in J. Phys. A: H.Y. GUO, J.S. NA, J.M. SHEN, S.K. WANG and Q.H. YU, Commun. Theor. Phys. 13(1989)107; R. Dick, Lett. Math. Phys. 18(1989)255; M. Schlichenmaier, Lett. Math. Phys. 19(1990)151; M: Schlichenmaier, Lett. Math. Phys. 19(1990)327.
[5] Z. Chang, H.Y. Guo, J.M. Shen, S.K. Wang, K. Wu and K.W. Xu, Phys. Lett. B343(1990)210.
[6] S.K. Wang and K.W. Xu, Phys. ~ e t tB. 351(1989)383; B340(1990)117.
[7] D. F'riedan, E. Martinec and S.H. Shenker, Nucl. Phys. B371(1986)93.
[8] I.M. Krichever and S.P. Novikov, Funk. Anai. i. Pril 21(2)(1987)46; 21(4)(1987)47;
[9] L. Brink, P. Di Vecchia and P. Howe, Phye. Lett. B65,(1976)471; S. Deaer and B. Zumino, Phys. Lett. B65(1976)369; A.M. Polyakov, Phys. Lett. B103(1981)207, 211; Commun.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}