Structure Phase Transitions of the (D + 1)-Dimensional Double sine-Gordon Field Theory

Yue-Jing ZHU, Sen-Yue LOU

理论物理通讯 ›› 1995, Vol. 23 ›› Issue (1) : 83-92.

PDF(439 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(439 KB)
理论物理通讯 ›› 1995, Vol. 23 ›› Issue (1) : 83-92.

Structure Phase Transitions of the (D + 1)-Dimensional Double sine-Gordon Field Theory

  • Yue-Jing ZHU1, Sen-Yue LOU1,2,3
作者信息 +

Structure Phase Transitions of the (D + 1)-Dimensional Double sine-Gordon Field Theory

  • Yue-Jing ZHU1, Sen-Yue LOU1,2,3
Author information +
文章历史 +

摘要

Using the thermal coherent state approach, we investigate the finite temperature quantum double sine-Gordon (DsG) field theory. From the stability conditions of the vacuum states of effective potential, the exact soliton-like solution of the field equation and the resemblance between the DsG model andλφ4 model, we show that there exist two types of structure phase transitions among four structures of the (D+1)-dimensional DsG model similar to the symmetry restored phase transition of λφ4 model. For the first type of phase transition, the small kink-like solutions will disappear at the critical temperature while the large kinklike solutions will be changed continuously at the critical temperature. For the second type of the phase transitions, the metastable localized soliton-like solution will disappear, while the stable kink-like solution exists for all the temperatures and their exact form is also independent of the temperature being under or over the critical temperature.

Abstract

Using the thermal coherent state approach, we investigate the finite temperature quantum double sine-Gordon (DsG) field theory. From the stability conditions of the vacuum states of effective potential, the exact soliton-like solution of the field equation and the resemblance between the DsG model andλφ4 model, we show that there exist two types of structure phase transitions among four structures of the (D+1)-dimensional DsG model similar to the symmetry restored phase transition of λφ4 model. For the first type of phase transition, the small kink-like solutions will disappear at the critical temperature while the large kinklike solutions will be changed continuously at the critical temperature. For the second type of the phase transitions, the metastable localized soliton-like solution will disappear, while the stable kink-like solution exists for all the temperatures and their exact form is also independent of the temperature being under or over the critical temperature.

引用本文

导出引用
Yue-Jing ZHU, Sen-Yue LOU. Structure Phase Transitions of the (D + 1)-Dimensional Double sine-Gordon Field Theory[J]. 理论物理通讯, 1995, 23(1): 83-92
Yue-Jing ZHU, Sen-Yue LOU. Structure Phase Transitions of the (D + 1)-Dimensional Double sine-Gordon Field Theory[J]. Communications in Theoretical Physics, 1995, 23(1): 83-92

参考文献

[1] K. Maki and P. Kumar, Phys. Rev. B14 (1976) 3290.

[2] R.K. Dodd, R.K. Bullough and S. Duckworth, J. Phys. A8 (1975) 164.

[3] K.M. Leung, Phys. Rev. B27 (1983) 2877; R. Pandit, C. Tannous and J.A. Krumhansl, Phys. Rev. B28 (1983) 289.

[4] H.J. Mikeska, J. Phys. C13 (1980) 2913; R. Pandit and C. Tannous, Phys. Rev. B28 (1983) 281.

[5] J. Pouget and G.A. Maugin, Phys. Rev. B30 (1984) 5306; ibid. 31 (1984) 4633.

[6] R.K. Bullough, P.J. Caudrey and M.H. Gibbs, Solitons, Springer Series in Topics in Current Physics, ed. R.K. Bullough and P.J. Caudrey, Springer, Berlin (1980), Vol. 17, p. 107.

[7] R. Mackenzie and F. Wilczek, Phys. Rev. D30 (1984) 2194; 2260; R. Blankenbecler and D. Boyanovsky,Phys. Rev. D31 (1985) 2089.

[8] S. Coleman, Phys. Rev. Dl1 (1975) 2087; S.Y. LOU and G.J. NI, Commun. Theor. Phys. (Beijing, China) 11 (1989) 87; S.Y. LOU, Commun. Theor. Phys. 15 (1991) 309.

[9] S.de Matino, S.de Siena and P. Sodano, Phys. Rev. B32 (1985) 3304.

[10] M. Salerno, Physica 17D (1985) 227; G.J. NI and S.Y. LOU, Acta Math. Sci. 9 (1989) 131.

[11] P.W. Higgs, Phys. Rev. Lett. 13 (1964) 508; Phys. Rev. 145 (1966) 1156.

[12] A. Vilenkin, Nucl. Phys. B226 (1983) 527.

[13] G.J. NI, J.J XU and W. CHEN, J. Phys. A18 (1985) 149.

[14] S.Y. LOU and G.J. NI, J. Math. Phys. 30 (1989) 1614.

[15] S.Y. LOU and G.J. NI, Commun. Theor. Phys. (Beijing, China).l2 (1989) 83.

[16] L. .Dolan and R. Jackiw, Phys. Rev. D9 (1974) 3320; I. Roditi, Phys. Lett. B169 (1986) 264; ibid. B177 (1986) 85; G.A. Hajj and P.M. Stevenson, Phys. Rev. D37 (1988) 413.

[17] R.K. SU, P.Z. BI and G.J. NI, J. Phys. A16 (1983) 2445; S.Q. CHEN and G.J. NI, ibid. 16 (1983) 3493; R.K. SU and X.G. GU, ibid. 19 (1986) 2891; R.K. SU and Z. HU, Phys. Lett. A141 (1989) 420.

[18] G.J. NI, Nucl. Phys. B211 (1983) 414.

[19] S. Iwabuch, Prog. Theor. Phys. 70 (1983) 941; M. Yamashita, ibid. 74 (1985) 622.

基金

lThe project supported by National Natural Science Foundation of China and Natural Science Foundation of Zhejiang Province.


PDF(439 KB)

1274

Accesses

0

Citation

Detail

段落导航
相关文章

/