Using the thermal coherent state approach, we investigate the finite temperature quantum double sine-Gordon (DsG) field theory. From the stability conditions of the vacuum states of effective potential, the exact soliton-like solution of the field equation and the resemblance between the DsG model andλφ4 model, we show that there exist two types of structure phase transitions among four structures of the (D+1)-dimensional DsG model similar to the symmetry restored phase transition of λφ4 model. For the first type of phase transition, the small kink-like solutions will disappear at the critical temperature while the large kinklike solutions will be changed continuously at the critical temperature. For the second type of the phase transitions, the metastable localized soliton-like solution will disappear, while the stable kink-like solution exists for all the temperatures and their exact form is also independent of the temperature being under or over the critical temperature.
Abstract
Using the thermal coherent state approach, we investigate the finite temperature quantum double sine-Gordon (DsG) field theory. From the stability conditions of the vacuum states of effective potential, the exact soliton-like solution of the field equation and the resemblance between the DsG model andλφ4 model, we show that there exist two types of structure phase transitions among four structures of the (D+1)-dimensional DsG model similar to the symmetry restored phase transition of λφ4 model. For the first type of phase transition, the small kink-like solutions will disappear at the critical temperature while the large kinklike solutions will be changed continuously at the critical temperature. For the second type of the phase transitions, the metastable localized soliton-like solution will disappear, while the stable kink-like solution exists for all the temperatures and their exact form is also independent of the temperature being under or over the critical temperature.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] K. Maki and P. Kumar, Phys. Rev. B14 (1976) 3290.
[2] R.K. Dodd, R.K. Bullough and S. Duckworth, J. Phys. A8 (1975) 164.
[3] K.M. Leung, Phys. Rev. B27 (1983) 2877; R. Pandit, C. Tannous and J.A. Krumhansl, Phys. Rev. B28 (1983) 289.
[4] H.J. Mikeska, J. Phys. C13 (1980) 2913; R. Pandit and C. Tannous, Phys. Rev. B28 (1983) 281.
[5] J. Pouget and G.A. Maugin, Phys. Rev. B30 (1984) 5306; ibid. 31 (1984) 4633.
[6] R.K. Bullough, P.J. Caudrey and M.H. Gibbs, Solitons, Springer Series in Topics in Current Physics, ed. R.K. Bullough and P.J. Caudrey, Springer, Berlin (1980), Vol. 17, p. 107.
[7] R. Mackenzie and F. Wilczek, Phys. Rev. D30 (1984) 2194; 2260; R. Blankenbecler and D. Boyanovsky,Phys. Rev. D31 (1985) 2089.
[8] S. Coleman, Phys. Rev. Dl1 (1975) 2087; S.Y. LOU and G.J. NI, Commun. Theor. Phys. (Beijing, China) 11 (1989) 87; S.Y. LOU, Commun. Theor. Phys. 15 (1991) 309.
[9] S.de Matino, S.de Siena and P. Sodano, Phys. Rev. B32 (1985) 3304.
[10] M. Salerno, Physica 17D (1985) 227; G.J. NI and S.Y. LOU, Acta Math. Sci. 9 (1989) 131.
[11] P.W. Higgs, Phys. Rev. Lett. 13 (1964) 508; Phys. Rev. 145 (1966) 1156.
[12] A. Vilenkin, Nucl. Phys. B226 (1983) 527.
[13] G.J. NI, J.J XU and W. CHEN, J. Phys. A18 (1985) 149.
[14] S.Y. LOU and G.J. NI, J. Math. Phys. 30 (1989) 1614.
[15] S.Y. LOU and G.J. NI, Commun. Theor. Phys. (Beijing, China).l2 (1989) 83.
[16] L. .Dolan and R. Jackiw, Phys. Rev. D9 (1974) 3320; I. Roditi, Phys. Lett. B169 (1986) 264; ibid. B177 (1986) 85; G.A. Hajj and P.M. Stevenson, Phys. Rev. D37 (1988) 413.
[17] R.K. SU, P.Z. BI and G.J. NI, J. Phys. A16 (1983) 2445; S.Q. CHEN and G.J. NI, ibid. 16 (1983) 3493; R.K. SU and X.G. GU, ibid. 19 (1986) 2891; R.K. SU and Z. HU, Phys. Lett. A141 (1989) 420.
[18] G.J. NI, Nucl. Phys. B211 (1983) 414.
[19] S. Iwabuch, Prog. Theor. Phys. 70 (1983) 941; M. Yamashita, ibid. 74 (1985) 622.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
lThe project supported by National Natural Science Foundation of China and Natural Science Foundation of Zhejiang Province.
{{custom_fund}}