We consider the resonant tunneling of electrons through one-dimensional Cantor-like fractal barriers. By means of a transfer matrix method, we present a general formalism to calculate the transmission and give some numerical examples. It is found that the transmission spectrum shows rich fractal patterns due to the self-similar geometry of the Cantor set. The scaling behaviour of the transmission spectrum is explored. By plotting the amplitudes of the wave functions, we also investigate the quasi-localization properties of the electrons.
Abstract
We consider the resonant tunneling of electrons through one-dimensional Cantor-like fractal barriers. By means of a transfer matrix method, we present a general formalism to calculate the transmission and give some numerical examples. It is found that the transmission spectrum shows rich fractal patterns due to the self-similar geometry of the Cantor set. The scaling behaviour of the transmission spectrum is explored. By plotting the amplitudes of the wave functions, we also investigate the quasi-localization properties of the electrons.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] S. John, H. Sompolinsky and M.J. Stephon, Phys. Rev. B27 (1983) 5592; M.L. Willianms and H.J. Maris, Phys. Rev. B31 (1985) 4508; M.Ya. Azbel, Phys. Rev. B28 (1983) 4106.
[2] S. He and J.D. Maynard, Phys. Rev. Lett. 57 (1986) 3171; Ian S. Graham, Luc PichC and M. Grant, Phys. Rev. Lett. 64 (1990) 3135; A.Z. Gennack and N. Garcia, Phys. Rev. Lett. 66 (1991) 2064.
[3] S. John, Phys. Rev. Lett. 58 (1987) 2486; S. Das Sarma, A. Kobayashi and R.E. Prange, Phys. Rev. Lett. 56 (1986) 1280; S. John and J. Wang, Phys. Rev. B43 (1991) 12772.
[4] M. Kohmoto, L.P. Kadanoff and C. Tang, Phys. Rev. Lett. 50 (1983) 1870; M. Kohmoto and Y. Oone, Phys. Lett. 102A (1984) 145; M. Kohmoto, B. Sutherland and C. Tang, Phys. Rev. B35 (1987) 1020.
[5] P. Hawrylak and J.J. Quinn, Phys. Rev. Lett. 57 (1986) 380; P. Hawrylak, G. Eliasson and J.J. Quinn, Phys. Rev. B36 (1987) 6501.
[6] X. WU, H.S. YAO and W.G. FENG, SPIE 1519 (1991) 625; W.G. FENG, N.H. LIU and X. WU, SPIE 1928 (1993) 286; N.H. LIU, W.G. FENG and X. WU, J. Phys.: Conden. Matt. 5 (1993) 4623.
[7] Y. Avishai and D. Berend, Phys. Rev. B41 (1990) 5492; Y. Avishai and D. Berend, Phys. Rev. B43 (1991) 6873; M. Baake, D. Joseph and P. Kramer, Phys. Lett. A168 (1992) 199.
[8] N.H. LIU, W.G. FENG and X. WU, Commun. Theor. Phys. (Beijing, China) 20 (1993) 257.
[9] J. Peyraud and J. Coste, Phys. Rev. B37 (1988) 3979.
[10] M. Kohmoto, B. Suterland and K. Iguchi, Phys. Rev. Lett. 58 (1987) 2436.
[11] W.G. FENG, W.Z. HE, D.P. XUE, Y.B. XU and X. WU, J. Phys.: Conden. Matt. 1 (1989) 8241.
[12] F. Craciun, A. Bettucci, E. Molinari, A. Petri and A. Alippi, Phys. Rev. Lett. 68 (1992) 1555.
[13] R. Merlin, K. Bajema and R. Clarke, Phys. Rev. Lett. 55 (1985) 1768.
[14] A. Chomette, B. Deveaud, M. Baudet, A. Regreny and G. Bastard, Phys. Rev. Lett. 57 (1986) 1464; L. Pavesi, E. Tuncel, B. Zimmermann and F.K. Reinhart, Phys. Rev. B39 (1989) 7788.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
The project supported by the Chinese National Advanced Technology Foundation under grant No. 040-144-05-085.
{{custom_fund}}