With the help of the nonlocal symmetry of the nonlinear Schrodinger equation, we get twotypes of nontrivial new similarity reductions. A type of new exact solutions including theso-called interacting soliton solution is also given.
Abstract
With the help of the nonlocal symmetry of the nonlinear Schrodinger equation, we get twotypes of nontrivial new similarity reductions. A type of new exact solutions including theso-called interacting soliton solution is also given.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] S.Y. LOU, Facterization and Inverse of the Recurision Operators for Some Integrable Models, Proc. XXI Diff. Georn. Methods in Theor. Phys., Tianjin, China, June 5-9, 1992, eds. C.N. YANG, M.L. GE and X.W. ZHOU, p. 531; S.Y. LOU, Phys. Lett. B302 (1993) 261; S.Y. LOU, J. Math. Phys. 35 (1994) 2396, 2336; S.Y. LOU, Phys. Lett. A175 (1993) 23; S.Y. LOU and W.Z. CHEN, Phys. Lett. A179 (1993) 271; S.Y. LOU, Phys. Lett. A181 (1993) 13; H.Y. RUAN and S.Y. LOU, J. Phys. Soc. Jpn. 62 (1993) 1917.
[2] F. Galas, J. Phys. A: Math. Gen. 25 (1992) L981.
[3] S.Y. LOU and X.B. HU, Chin. Phys. Lett. 10 (1993) 577.
[4] J.M. Verosky, J. Math. Phys. 32 (1991) 1733.
[5] V.A. Andreev and M.V. Shmakova, J. Math. Phys. 34 (1993) 3491.
[6] C. Tian, Some Constraints and Solutions of the Kadorntsev-Petviashvili Equation, USTC (1993) preprint; P.J. Olver, Applications of Lie Group to Differential Equations, Springer, Berlin (1986); Nonlinear Analysis TMT 3, (1979).
[7] R.N. Aiyer, B. Fuchssteiner and W. Oevel, J. Phys. A: Math. Gen. 19 (1986) 3755; B. Fuchssteiner and R.N. Aiyer, J. Phys. A: Math. Gen. 20 (1987) 1022.
[8] S.Y. LOU, preprint; S.Y. LOU and H.Y. RUAN, preprint.
[9] A. Ramani, B. Grammaticos and T. Bountis, Phys. Rep. 180 (1989) 159.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
Natural Science Foundation of Zhejiang Province and National Natural Science Foundation of China
{{custom_fund}}