Symbolic Dynamics of the Piecewise Linear Standard Map

ZHENG Weimou

理论物理通讯 ›› 1998, Vol. 29 ›› Issue (3) : 369-376.

PDF(406 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(406 KB)
理论物理通讯 ›› 1998, Vol. 29 ›› Issue (3) : 369-376.

Symbolic Dynamics of the Piecewise Linear Standard Map

  • ZHENG Weimou
作者信息 +

Symbolic Dynamics of the Piecewise Linear Standard Map

  • ZHENG Weimou
Author information +
文章历史 +

摘要

The symbolic dynamics of the sawtooth map is extended to the dissipative piecewise linear standard map. The ordering rules of foliations are derived, and the admissibility condition for allowed symbolic sequences is obtained. A symbolic analysis is given for invariant circles of the piecewise linear standard map without dissipation.

Abstract

The symbolic dynamics of the sawtooth map is extended to the dissipative piecewise linear standard map. The ordering rules of foliations are derived, and the admissibility condition for allowed symbolic sequences is obtained. A symbolic analysis is given for invariant circles of the piecewise linear standard map without dissipation.

关键词

symbolic dynamics / dissipative piecewise linear standard map / ordering rule

Key words

symbolic dynamics / dissipative piecewise linear standard map / ordering rule

引用本文

导出引用
ZHENG Weimou. Symbolic Dynamics of the Piecewise Linear Standard Map[J]. 理论物理通讯, 1998, 29(3): 369-376
ZHENG Weimou. Symbolic Dynamics of the Piecewise Linear Standard Map[J]. Communications in Theoretical Physics, 1998, 29(3): 369-376

参考文献

[1] B.V. Chirikov, Phys. Rep. 52 (1979) 265.

[2] I.C. Percival, in Nonlinear Dynamics and the Beam-Beam Interactions, eds M. Month and J.C.Herera, AIP Conference Proceedings No. 57, Am. Inst. Phys., New York (1979); J.M. Greene, J. Math. Phys. 20 (1979) 1183.

[3] M.J. Feigenbaum, L.P. Kadanoff and S.J. Shenker, Physica 5D (1982) 370; D. Rand, S. Ostlund, J. Sethna and E. Siggia, Phys. Rev. Lett. 49 (1982) 132; Physica 6D (1984) 303; T. Bohr, P.Bak and M.H. Jensen, Phys. Rev. A30 (1984) 1970; G. Schmidt and B.H. Wang, Phys. Rev.A32 (1985) 2994.

[4] S. Bullett, Commun. Math. Phys. 107 (1986) 241.

[5] P. Collet and J.P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Birkhaiiser, (1980); J. Milnor and W. Thurston, Lect. Notes in Math. 1342 (1988) 465.

[6] P. Cvitanovit, G.H. Gunaratne and I. Procaccia, Phys. Rev. A38 (1988) 1503.

[7] I. Percival and F. Vivaldi, Physica 27D (1987) 373.

[8] C. Bernhardt, Proc. Lond. Math. Soc. I11 Ser. 45 (1982) 258; W.M. ZHENG, Int. J. Mod. Phys.B5 (1991) 481.

[9] L.A. Bunimovich, Funct. Anal. Appl. 8 (1974) 254; Comm. Math. Phys. 65 (1979) 295; 0. Biham and M. Kvale, Phys. Rev. A46 (1992) 6334; J.D. Meiss, Chaos 2 (1992) 267; K.T. Hansen and P. CvitanoviC, (preprint); W.Z. ZHENG, Phys. Rev. E56 (1997) 1556.

基金

The project partially supported by National Natural Science Foundation of China


PDF(406 KB)

Accesses

Citation

Detail

段落导航
相关文章

/