A 9×9 Matrix Representation of Birman--Wenzl--Murakami Algebra and BerryPhase in Yang-Baxter System

GOU Li-Dan,, XUE Kang, and WANG Gang-Cheng

理论物理通讯 ›› 2011, Vol. 55 ›› Issue (02) : 263-267.

PDF(137 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(137 KB)
理论物理通讯 ›› 2011, Vol. 55 ›› Issue (02) : 263-267.

A 9×9 Matrix Representation of Birman--Wenzl--Murakami Algebra and BerryPhase in Yang-Baxter System

作者信息 +

A 9×9 Matrix Representation of Birman--Wenzl--Murakami Algebra and BerryPhase in Yang-Baxter System

  • GOU Li-Dan,1,2 XUE Kang,2 and WANG Gang-Cheng2
Author information +
文章历史 +

Abstract

We present a 9×9 S-matrix and E-matrix. A representation of specialized Birman-Wenzl-Murakami algebra is obtained. Starting from the given braid group representation S-matrix, we obtain the trigonometric solution of Yang-Baxter equation. A unitary matrix \breve{R}(x,φ12) is generated via the
Yang-Baxterization approach. Then we construct a Yang-Baxter
Hamiltonian through the unitary matrix \breve{R}(x,φ12). Berry phase of this Yang-Baxter system is investigated in detail.

关键词

Birman-Wenzl-Murakami algebra / Yang-Baxter equation / Berry phase

Key words

Birman-Wenzl-Murakami algebra / Yang-Baxter equation / Berry phase

引用本文

导出引用
GOU Li-Dan,, XUE Kang, and WANG Gang-Cheng. A 9×9 Matrix Representation of Birman--Wenzl--Murakami Algebra and BerryPhase in Yang-Baxter System[J]. 理论物理通讯, 2011, 55(02): 263-267
GOU Li-Dan,, XUE Kang, and WANG Gang-Cheng. A 9×9 Matrix Representation of Birman--Wenzl--Murakami Algebra and BerryPhase in Yang-Baxter System[J]. Communications in Theoretical Physics, 2011, 55(02): 263-267
中图分类号: 03.67.Mn    02.40.-k    03.65.Vf   

PDF(137 KB)

1073

Accesses

0

Citation

Detail

段落导航
相关文章

/