Adaptive Feedback Stabilization with Quantized State Measurements for a Class of Chaotic Systems

王银河, 范永清, 王青云, 章云

理论物理通讯 ›› 2012, Vol. 57 ›› Issue (05) : 808-816.

PDF(253 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(253 KB)
理论物理通讯 ›› 2012, Vol. 57 ›› Issue (05) : 808-816.

Adaptive Feedback Stabilization with Quantized State Measurements for a Class of Chaotic Systems

作者信息 +

Adaptive Feedback Stabilization with Quantized State Measurements for a Class of Chaotic Systems

Author information +
文章历史 +

摘要

We investigate asymptotical stabilization for a class of chaotic systems by means of quantization measurements of states. The quantizer adopted in this paper takes finite many values. In particular, one zoomer is placed at the input terminal of the quantizer, and another zoomer is located at the output terminal of the quantizer. The zoomers possess a common adjustable time-varying parameter. By using the adaptive laws for the time-varying parameter and estimating boundary error of values of quantization, the stabilization feedback controller with the quantized state measurements is proposed for a class of chaotic systems. Finally, some numerical examples are given to demonstrate the validity of the proposed methods.

Abstract

We investigate asymptotical stabilization for a class of chaotic systems by means of quantization measurements of states. The quantizer adopted in this paper takes finite many values. In particular, one zoomer is placed at the input terminal of the quantizer, and another zoomer is located at the output terminal of the quantizer. The zoomers possess a common adjustable time-varying parameter. By using the adaptive laws for the time-varying parameter and estimating boundary error of values of quantization, the stabilization feedback controller with the quantized state measurements is proposed for a class of chaotic systems. Finally, some numerical examples are given to demonstrate the validity of the proposed methods.

关键词

chaotic system / stabilization / quantization measurement / adaptive laws

Key words

chaotic system / stabilization / quantization measurement / adaptive laws

引用本文

导出引用
王银河, 范永清, 王青云, . Adaptive Feedback Stabilization with Quantized State Measurements for a Class of Chaotic Systems[J]. 理论物理通讯, 2012, 57(05): 808-816
WANG Yin-He, FAN Yong-Qing, WANG Qing-Yun, et al. Adaptive Feedback Stabilization with Quantized State Measurements for a Class of Chaotic Systems[J]. Communications in Theoretical Physics, 2012, 57(05): 808-816
中图分类号: 05.45.-a   

参考文献

[1] H. Richter and K.J. Reinschke, Int. J. Bifurcat. Chaos 8 (1998) 1565.
[2] G.P. Jiang, G.R. Chen, and W.K.S. Tang, IEEE Trans. Circ. Syst.-I: Fund. Theor. Appl. 49 (2002) 1820.
[3] J.H. L?, J.A. Lu, Chaos, Solitons & Fractals 17 (2003) 127.
[4] Ju H. Park, O.M. Kwon, Chaos, Solitons & Fractals 23 (2005) 445.
[5] R.E. Precup, M.L. Tomescu, S. Preitl, Int. J. of Compt. Commun. Contr. II (2007) 279.
[7] B. Chen, X.P. Liu, and S.C. Tong, Chaos, Solitons & Fractals 34 (2007) 1180.
[7] F.X. Chen, L. Chen, and W.D. Zhang, Appl. Math. and Comput. 200(1) (2008) 101.
[8] W.G. Yu, Phys. Lett. A 374 (2010) 1488.
[9] L. Pan, D.Y. Xu, and W.N. Zhou, J. Inf. Comput. Sci. 5(2) (2010) 117.
[10] W.M. Sun, X.Y. Wang, and J.W. Lei, Appl. Mech. Math. 66-68 (2011) 217.
[11] W.P.M.H. Heemels, H.B. Siahaan, A. Lj. Juloski, and S. Weiland, Proceedings of American Contral Conference, Denver Colorado, Date of Conference: 4-6 June 2003, 4 (2003) 3502.
[12] T. Ushio and K. Hirai, Int. J. Nonl. Mechine 20 (1985) 493.
[13] T. Ushio and C.S. Hsu, IEEE Trans. Circ. Syst. CAS 34 (1987) 133.
[14] M.K. Masten and I. Panahi, Contr. Eng. Prac. 5 (1997) 449.
[15] M. Fu and L. Xie, IEEE Trans. Automat. Contr. 54 (2009) 1165.
[16] R.W. Brockett and D. Liberzon, IEEE Trans. on Auto. Contr. 45 (2000) 1279.
[17] D. Liberzon, Automatica 39 (2003) 1543.
[18] D. Liberzon and D. Nesic, IEEE Trans. on Auto. Contr. 52 (2007) 767.
[19] C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, Springer-Verlag, NY (1982)
[20] G.R. Chen and T. Ueta, Int. J. Bifurcat. Chaos Appl. Scie. Eng. 9 (1999) 1465.
[21] J.H. L?, Int. J. Bifurcat. Chaos 12 (2002) 659.
[22] M.T. Yassen, Chaos, Solitons & Fractals 26 (2005) 913.
[23] J.C. Sportt, Phys. Lett. A 266 (2000) 19.
[24] A. Charnes, W.W. Cooper, and A.P. Schinnar, Proc. National Acad. Scie. USA 73 (1976) 3747.
[25] J.J.E. Slotine and W.P. Li, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs (1991).

基金

Supported by the National Science Foundation of China under Grant No. 11172017, and the Guangdong Natural Science Foundation under Grant No. 8151009001000061 and Natural Science Joint Research Program Foundation of Guangdong Province under Grant No. 8351009001000002


PDF(253 KB)

1118

Accesses

0

Citation

Detail

段落导航
相关文章

/