We investigate asymptotical stabilization for a class of chaotic systems by means of quantization measurements of states. The quantizer adopted in this paper takes finite many values. In particular, one zoomer is placed at the input terminal of the quantizer, and another zoomer is located at the output terminal of the quantizer. The zoomers possess a common adjustable time-varying parameter. By using the adaptive laws for the time-varying parameter and estimating boundary error of values of quantization, the stabilization feedback controller with the quantized state measurements is proposed for a class of chaotic systems. Finally, some numerical examples are given to demonstrate the validity of the proposed methods.
Abstract
We investigate asymptotical stabilization for a class of chaotic systems by means of quantization measurements of states. The quantizer adopted in this paper takes finite many values. In particular, one zoomer is placed at the input terminal of the quantizer, and another zoomer is located at the output terminal of the quantizer. The zoomers possess a common adjustable time-varying parameter. By using the adaptive laws for the time-varying parameter and estimating boundary error of values of quantization, the stabilization feedback controller with the quantized state measurements is proposed for a class of chaotic systems. Finally, some numerical examples are given to demonstrate the validity of the proposed methods.
关键词
chaotic system /
stabilization /
quantization measurement /
adaptive laws
{{custom_keyword}} /
Key words
chaotic system /
stabilization /
quantization measurement /
adaptive laws
{{custom_keyword}} /
中图分类号:
05.45.-a
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] H. Richter and K.J. Reinschke, Int. J. Bifurcat. Chaos 8 (1998) 1565.
[2] G.P. Jiang, G.R. Chen, and W.K.S. Tang, IEEE Trans. Circ. Syst.-I: Fund. Theor. Appl. 49 (2002) 1820.
[3] J.H. L?, J.A. Lu, Chaos, Solitons & Fractals 17 (2003) 127.
[4] Ju H. Park, O.M. Kwon, Chaos, Solitons & Fractals 23 (2005) 445.
[5] R.E. Precup, M.L. Tomescu, S. Preitl, Int. J. of Compt. Commun. Contr. II (2007) 279.
[7] B. Chen, X.P. Liu, and S.C. Tong, Chaos, Solitons & Fractals 34 (2007) 1180.
[7] F.X. Chen, L. Chen, and W.D. Zhang, Appl. Math. and Comput. 200(1) (2008) 101.
[8] W.G. Yu, Phys. Lett. A 374 (2010) 1488.
[9] L. Pan, D.Y. Xu, and W.N. Zhou, J. Inf. Comput. Sci. 5(2) (2010) 117.
[10] W.M. Sun, X.Y. Wang, and J.W. Lei, Appl. Mech. Math. 66-68 (2011) 217.
[11] W.P.M.H. Heemels, H.B. Siahaan, A. Lj. Juloski, and S. Weiland, Proceedings of American Contral Conference, Denver Colorado, Date of Conference: 4-6 June 2003, 4 (2003) 3502.
[12] T. Ushio and K. Hirai, Int. J. Nonl. Mechine 20 (1985) 493.
[13] T. Ushio and C.S. Hsu, IEEE Trans. Circ. Syst. CAS 34 (1987) 133.
[14] M.K. Masten and I. Panahi, Contr. Eng. Prac. 5 (1997) 449.
[15] M. Fu and L. Xie, IEEE Trans. Automat. Contr. 54 (2009) 1165.
[16] R.W. Brockett and D. Liberzon, IEEE Trans. on Auto. Contr. 45 (2000) 1279.
[17] D. Liberzon, Automatica 39 (2003) 1543.
[18] D. Liberzon and D. Nesic, IEEE Trans. on Auto. Contr. 52 (2007) 767.
[19] C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, Springer-Verlag, NY (1982)
[20] G.R. Chen and T. Ueta, Int. J. Bifurcat. Chaos Appl. Scie. Eng. 9 (1999) 1465.
[21] J.H. L?, Int. J. Bifurcat. Chaos 12 (2002) 659.
[22] M.T. Yassen, Chaos, Solitons & Fractals 26 (2005) 913.
[23] J.C. Sportt, Phys. Lett. A 266 (2000) 19.
[24] A. Charnes, W.W. Cooper, and A.P. Schinnar, Proc. National Acad. Scie. USA 73 (1976) 3747.
[25] J.J.E. Slotine and W.P. Li, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs (1991).
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
Supported by the National Science Foundation of China under Grant No. 11172017, and the Guangdong Natural Science Foundation under Grant No. 8151009001000061 and Natural Science Joint Research Program Foundation of Guangdong Province under Grant No. 8351009001000002
{{custom_fund}}