The de Sitter invariant Special Relativity (dS-SR) is SR with constant curvature, and a natural extension of usual Einstein SR (E-SR). In this paper, we solve the dS-SR Dirac equation of Hydrogen by means of the adiabatic approach and the quasi-stationary perturbation calculations of QM. Hydrogen atom is located in the light cone of the Universe. FRW metric and ΛCDM cosmological model are used to discuss this issue. To the atom, effects of de Sitter space-time geometry described by Beltrami metric are taken into account. The dS-SR Dirac equation turns out to be a time dependent quantum Hamiltonian system. We reveal that: (i) The fundamental physics constants me,h,e variate adiabatically along with cosmologic time in dS-SR QM framework. But the fine-structure constant α≡ e2/(hc) keeps to be invariant; (ii) (2s1/2-2p1/2)-splitting due to dS-SR QM effects: By means of perturbation theory, that splitting Δ E(z) are calculated analytically, which belongs to O(1/R2)-physics of dS-SR QM. Numerically, we find that when |R|~{103Gly, 104Gly, 105Gly}, and z~{1,or 2}, the Δ E(z)>>1 (Lamb shift). This indicates that for these cases the hyperfine structure effects due to QED could be ignored, and the dS-SR fine structure effects are dominant. This effect could be used to determine the universal constant R in dS-SR, and be thought as a new physics beyond E-SR.
Abstract
The de Sitter invariant Special Relativity (dS-SR) is SR with constant curvature, and a natural extension of usual Einstein SR (E-SR). In this paper, we solve the dS-SR Dirac equation of Hydrogen by means of the adiabatic approach and the quasi-stationary perturbation calculations of QM. Hydrogen atom is located in the light cone of the Universe. FRW metric and ΛCDM cosmological model are used to discuss this issue. To the atom, effects of de Sitter space-time geometry described by Beltrami metric are taken into account. The dS-SR Dirac equation turns out to be a time dependent quantum Hamiltonian system. We reveal that: (i) The fundamental physics constants me,h,e variate adiabatically along with cosmologic time in dS-SR QM framework. But the fine-structure constant α≡ e2/(hc) keeps to be invariant; (ii) (2s1/2-2p1/2)-splitting due to dS-SR QM effects: By means of perturbation theory, that splitting Δ E(z) are calculated analytically, which belongs to O(1/R2)-physics of dS-SR QM. Numerically, we find that when |R|~{103Gly, 104Gly, 105Gly}, and z~{1,or 2}, the Δ E(z)>>1 (Lamb shift). This indicates that for these cases the hyperfine structure effects due to QED could be ignored, and the dS-SR fine structure effects are dominant. This effect could be used to determine the universal constant R in dS-SR, and be thought as a new physics beyond E-SR.
关键词
hydrogen atom /
special relativity with de sitter space-time symmetry /
time variation of physical constants /
Lamb shift /
time dependent Hamiltonian in quantum mechanics /
Friedmann--Robertson--Walker (FRW) universe
{{custom_keyword}} /
Key words
hydrogen atom /
special relativity with de sitter space-time symmetry /
time variation of physical constants /
Lamb shift /
time dependent Hamiltonian in quantum mechanics /
Friedmann--Robertson--Walker (FRW) universe
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] K.H. Look (Q.K. Lu), Why the Minkowski metric must be used?, (1970) unpublished.
[2] K.H. Look, C.L. Tsou (Z.L. Zou), and H.Y. Kuo (H.Y. Guo), Acta Physica Sinica 23 (1974) 225 (in Chinese).
[3] H.Y. Guo, H.T. Wu, and B. Zhou, Phys. Lett. B 670 (2009) 437; ArXiv:0809.3562. H.Y. Guo, B. Zhou, Y. Tian, and Z. Xu, Phys. Rev. D 75 (2007) 026006. H.Y. Guo, Phys. Lett. B 653 (2007) 88; H.Y. Guo, C.G. Huang, Z. Xu, and B. Zhou, Phys. Lett. A 331 (2004) 1; Mod. Phys. Lett. A 19 (2004) 1701; Chin. Phys. Lett. 22 (2005) 2477; hep-th/0405137; H.Y. Guo, C.G. Huang, and B. Zhou, hep-th/0404010. Y. Tian, H.Y. Guo, C.G. Huang, Z. Xu, and B. Zhou, Phys. Rev. D 71 (2005) 044030; H.Y. Guo, C.G. Huang, Z. Xu, and B. Zhou, Mod. Phys. Lett. A 19 (2004) 1701, hep-th/0403013; H.Y. Guo, C.G. Huang, Z. Xu, and B. Zhou, Phys. Lett. A 331 (2004) 1, hep-th/0403171; Z. Cnang, S.X. Chen, C.B. Guan, and C.G. Huang, Phys. Rev. D 71 (2005) 103007; Z. Chang, S.X. Chen, and C.G. Huang, Chin. Phys. Lett.22 (2005) 791.
[4] M.L. Yan, N.C. Xiao, W. Huang, and S. Li, Commun. Theor. Phys. 48 (2007) 27, hep-th/0512319.
[5] M. Born and V. Fock, Z. Phys. 51 (1928) 165.
[6] A. Messiah, Quantum Mechanics I, II , North-Holland Publishing Company (1970).
[7] J.E. Bayfield, Quantum Evolution: An Introduction to Time-Dependent Quantum Mechanics, John Wiley & Sons, Inc., New York (1999).
[8] S.Z. Ke, F.K. Xiao, and X.F. Jiang, Quantum Mechanics, Science Press, Beijing (2006) (in Chinese).
[9] M.L. Yan, Chin. Phys. C 35 (2011) 228, arXiv: 1105.5693[physics.gen-ph].
[10] R. Utiyama, Phys. Rev. 101 (1956) 1597.
[11] See, e.g., T.W.B. Kibble, J. Math. Phys. 2 (1961) 212; Y.M. Cho, Phys. Rev. D 14 (1976) 2521; R.P. Feynman, Lectures on Gravitation, Caltech, Pasadena, Calif. (1963).
[12] H.T. Nieh and M.L. Yan, Ann. Phys. 138 (1982) 237, and the references within.
[13] M.T. Murphy, J.K. Webb, and V.V. Flambaum, Phys. Rev. Lett. 99 (2007) 239001, astro-ph/0612407; M.T. Murphy, V.V. Flambaum, J.K. Webb, V.V. Dzuba, J.X. Prochaska, and A.M. Wolfe, Lec. Notes in Phys. 648 (2004) 131; M.T. Murphy, J.K. Webb, and V.V. Flambaum, Mon. Not. Roy. Astron. Soc. 345 (2003) 609; M.T. Murphy, J.K. Webb, V.V. Flambaum, J.X. Prochaska, and A.M. Wolfe, Month. Not. R. Astron. Soc. 327 (2001) 1237; M.T. Murphy, J.K. Webb, V.V. Flambaum, C.W. Churchill, and J.X. Prochaska, Month. Not. R. Astron. Soc. 327 (2001) 1208; J.K. Webb, M.T. Murphy, V.V. Flambaum, V.A. Dzuba, J.D. Barrow, C.W. Churchill, J.X. Pochaska, and A.M. Wolfe, Phys. Rev. Lett. 87 (2001) 091301; J.K. Webb, V.V. Flambaum, C.W. Churchill, M.J. Drinkwater, J.D. Barrow, Phys. Rev. Lett. 82 (1999) 884; J.K. Webb, J.A. King, M.T. Murphy, V.V. Flambaum, R.F. Carswell, and M.B. Bainbridge, arXiv:1008.3907[astro-ph.CO].
[14] F. van Weerdenburg, M.T. Murphy, A.L. Malec, L. Kaper, and W. Ubachs, Phys. Rev. Lett. 106 (2011) 180802.
[15] V.A. Dzuba, V.V. Flambaum, and M.G. Kozlov, Phys. Rev. A 54 (1996) 3948; V.A. Dzuba, V.V. Flambaum, and J.K. Webb, Phys. Rev. Lett. 82 (1999) 888; V.A. Dzuba, V.V. Flambaum, M.T. Murphy, and J.K. Webb, Phys. Rev. A 63 (2001) 042509.
[16] V.A. Dzuba, V.V. Flambaum, M.G. Kozlov, and M. Marchenko, Phys. Rev. A 66 (2002) 022501, arXiv:phsics/0112093.
[17] S. Weinberg, Cosmology, Oxforrd University Press Inc., New York (2008).
[18] S. Weinberg, Rev. Mod. Phys. 61 (1989) 1; T. Padmanabhan, Phys. Rep. 380 (2003) 235.
[19] P.J.E. Peebles, Rev. Mod. Phys. 75 (2009) 559.
[20] E. Komatsu, et al., Astrophys. J. Suppl. 180 (2009) 330.
[21] M.E. Rose, Relativistic Electron Theory, John Wiley, New York (1961).
[22] Paul Strange, Relativistic Quantum Mechanics, Cambridge Unversity Press (2008).
[23] L. Parker, Phys. Rev. Lett. 44 (1980) 1559; Phys. Rev. D 22 (1980) 1922; L. Barker and L.O. Pimentel, Phys. Rev. D 25 (1982) 3180; Z.H. Zhang, Y.X. Liu, and X.G. Lee, Phys. Rev. D 76 (2007) 064016.
[24] S. Moradi and E. Aboualizadeh, Gen Relativ Gravit. 42 (2010) 435.
[25] F.K. Manasse and C.W. Misner, J. Math. Phys. (NY) 4 (1963) 735.
[26] Footnote: This result is different from the author's former work arXiv:1004.3023v4 [physics.gen-ph]. There is a mistake in the calculations of arXiv:1004.3023 [physics.gen-ph]: the equations (53) (54) of arXiv:1004.3023 should be corrected into Eqs. (16), (17) of this pesent paper.
[27] L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, (Translated from Russian by M. Hamermesh), Pergamon Press, Oxford (1987).
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
Supported in part by National Natural Science Foundation of China under Grant No. 10975128, and and by the Chinese Science Academy Foundation under Grant No. KJCX-YW-N29
{{custom_fund}}