Temperature Properties in Polydisperse Granular Mixtures

李睿, 肖明, 李志浩, 张端明

理论物理通讯 ›› 2013, Vol. 59 ›› Issue (02) : 229-232.

PDF(501 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(501 KB)
理论物理通讯 ›› 2013, Vol. 59 ›› Issue (02) : 229-232.

Temperature Properties in Polydisperse Granular Mixtures

作者信息 +

Temperature Properties in Polydisperse Granular Mixtures

Author information +
文章历史 +

摘要

Numerical simulations are employed to consider the problem of determining the granular temperatures of the species of a homogeneous heated granular mixture with a power-law size distribution. The partial granular temperature ratios are studied as functions of the fractal dimension D, the restitution coefficient e, the rescaled viscosity time, the average occupied area fraction φ, the total particle number N and the number fraction. Different species of particles in a power-law system typically do not have the same mean kinetic energy, namely the granular temperature. It is found that the extent of nonequipartition of kinetic energy is determined by the fractal dimension D, the restitution coefficient e and the rescaled viscosity time, while is insensitive to the total particle number N, the area fraction φ and the number fraction.

Abstract

Numerical simulations are employed to consider the problem of determining the granular temperatures of the species of a homogeneous heated granular mixture with a power-law size distribution. The partial granular temperature ratios are studied as functions of the fractal dimension D, the restitution coefficient e, the rescaled viscosity time, the average occupied area fraction φ, the total particle number N and the number fraction. Different species of particles in a power-law system typically do not have the same mean kinetic energy, namely the granular temperature. It is found that the extent of nonequipartition of kinetic energy is determined by the fractal dimension D, the restitution coefficient e and the rescaled viscosity time, while is insensitive to the total particle number N, the area fraction φ and the number fraction.

关键词

nonequipartition / granular temperature / continuous size

Key words

nonequipartition / granular temperature / continuous size

引用本文

导出引用
李睿, 肖明, 李志浩, . Temperature Properties in Polydisperse Granular Mixtures[J]. 理论物理通讯, 2013, 59(02): 229-232
LI Rui, XIAO Ming, LI Zhi-Hao, et al. Temperature Properties in Polydisperse Granular Mixtures[J]. Communications in Theoretical Physics, 2013, 59(02): 229-232
中图分类号: 81.05.Rm    83.10.Pp    05.20.Dd   

参考文献

[1] H.M. Jaeger, S.R. Nagel, and R.P. Behringer, Rev. Mod. Phys. 68 (1996) 1259.

[2] V. Garzo and J. Dufty, Phys. Rev. E 60 (1999) 5706.

[3] W. Losert, et al., Chaos 9 (1999) 682.

[4] A. Barrat and E. Trizac, Gran. Matter 4 (2002) 57.

[5] K. Feitosa and N. Menon, Phys. Rev. Lett. 88 (2002) 198301.

[6] R.D. Wildman and D.J. Parker, Phys. Rev. Lett. 88 (2002) 064301.

[7] R. Pagnani, U.M.B. Marconi, and A. Puglisi, Phys. Rev. E 66 (2002) 051304.

[8] U.M.B. Marconi and A. Puglisi, Phys. Rev. E 66 (2002) 011301.

[9] A. Santos and H.W. Dufty, Phys. Rev. Lett. 86 (2001) 4823; P.A. Martin and J. Piasecki, Europhys. Lett. 46 (1999) 613.

[10] R. Li, D.M. Zhang, et al., Commun. Theor. Phys. 48 (2007) 343.

[11] R. Li, D.M. Zhang, M. Xiao, and Z.H. Li, Commun. Theor. Phys. 56 (2011) 1145.

[12] D.M. Zhang, R. Li, et al., J. Phys. A: Math. Gen. 38 (2005) 8861.

[13] R. Li, D.M. Zhang, et al., Chin. Phys. Lett. 24 (2007) 1482.

[14] Z.Y. Chen, et al., Commun. Theor. Phys. 48 (2007) 481; Z.Y. Chen, et al., Commun. Theor. Phys. 49 (2008) 1333; Z.Y. Chen and D.M. Zhang, Commun. Theor. Phys. 51 (2009) 259.

基金

Supported by the National Natural Science Foundation of China under Grant Nos. 10675048 and 1068006


PDF(501 KB)

1175

Accesses

0

Citation

Detail

段落导航
相关文章

/