Numerical simulations are employed to consider the problem of determining the granular temperatures of the species of a homogeneous heated granular mixture with a power-law size distribution. The partial granular temperature ratios are studied as functions of the fractal dimension D, the restitution coefficient e, the rescaled viscosity time, the average occupied area fraction φ, the total particle number N and the number fraction. Different species of particles in a power-law system typically do not have the same mean kinetic energy, namely the granular temperature. It is found that the extent of nonequipartition of kinetic energy is determined by the fractal dimension D, the restitution coefficient e and the rescaled viscosity time, while is insensitive to the total particle number N, the area fraction φ and the number fraction.
Abstract
Numerical simulations are employed to consider the problem of determining the granular temperatures of the species of a homogeneous heated granular mixture with a power-law size distribution. The partial granular temperature ratios are studied as functions of the fractal dimension D, the restitution coefficient e, the rescaled viscosity time, the average occupied area fraction φ, the total particle number N and the number fraction. Different species of particles in a power-law system typically do not have the same mean kinetic energy, namely the granular temperature. It is found that the extent of nonequipartition of kinetic energy is determined by the fractal dimension D, the restitution coefficient e and the rescaled viscosity time, while is insensitive to the total particle number N, the area fraction φ and the number fraction.
关键词
nonequipartition /
granular temperature /
continuous size
{{custom_keyword}} /
Key words
nonequipartition /
granular temperature /
continuous size
{{custom_keyword}} /
中图分类号:
81.05.Rm
83.10.Pp
05.20.Dd
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] H.M. Jaeger, S.R. Nagel, and R.P. Behringer, Rev. Mod. Phys. 68 (1996) 1259.
[2] V. Garzo and J. Dufty, Phys. Rev. E 60 (1999) 5706.
[3] W. Losert, et al., Chaos 9 (1999) 682.
[4] A. Barrat and E. Trizac, Gran. Matter 4 (2002) 57.
[5] K. Feitosa and N. Menon, Phys. Rev. Lett. 88 (2002) 198301.
[6] R.D. Wildman and D.J. Parker, Phys. Rev. Lett. 88 (2002) 064301.
[7] R. Pagnani, U.M.B. Marconi, and A. Puglisi, Phys. Rev. E 66 (2002) 051304.
[8] U.M.B. Marconi and A. Puglisi, Phys. Rev. E 66 (2002) 011301.
[9] A. Santos and H.W. Dufty, Phys. Rev. Lett. 86 (2001) 4823; P.A. Martin and J. Piasecki, Europhys. Lett. 46 (1999) 613.
[10] R. Li, D.M. Zhang, et al., Commun. Theor. Phys. 48 (2007) 343.
[11] R. Li, D.M. Zhang, M. Xiao, and Z.H. Li, Commun. Theor. Phys. 56 (2011) 1145.
[12] D.M. Zhang, R. Li, et al., J. Phys. A: Math. Gen. 38 (2005) 8861.
[13] R. Li, D.M. Zhang, et al., Chin. Phys. Lett. 24 (2007) 1482.
[14] Z.Y. Chen, et al., Commun. Theor. Phys. 48 (2007) 481; Z.Y. Chen, et al., Commun. Theor. Phys. 49 (2008) 1333; Z.Y. Chen and D.M. Zhang, Commun. Theor. Phys. 51 (2009) 259.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
Supported by the National Natural Science Foundation of China under Grant Nos. 10675048 and 1068006
{{custom_fund}}