Analytical Approach for Nonlinear Partial Differential Equations of Fractional Order

Pradip Roul

理论物理通讯 ›› 2013, Vol. 60 ›› Issue (03) : 269-271.

PDF(904 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(904 KB)
理论物理通讯 ›› 2013, Vol. 60 ›› Issue (03) : 269-271.

Analytical Approach for Nonlinear Partial Differential Equations of Fractional Order

作者信息 +

Analytical Approach for Nonlinear Partial Differential Equations of Fractional Order

Author information +
文章历史 +

摘要

The purpose of the paper is to present analytical and numerical solutions of a degenerate parabolic equation with time-fractional derivatives arising in the spatial diffusion of biological populations. The homotopy-perturbation method is employed for solving this class of equations, and the time-fractional derivatives are described in the sense of Caputo. Comparisons are made with those derived by Adomian's decomposition method, revealing that the homotopy perturbation method is more accurate and convenient than the Adomian's decomposition method. Furthermore, the results reveal that the approximate solution continuously depends on the time-fractional derivative and the proposed method incorporating the Caputo derivatives is a powerful and efficient technique for solving the fractional differential equations without requiring linearization or restrictive assumptions. The basis ideas presented in the paper can be further applied to solve other similar fractional partial differential equations.

Abstract

The purpose of the paper is to present analytical and numerical solutions of a degenerate parabolic equation with time-fractional derivatives arising in the spatial diffusion of biological populations. The homotopy-perturbation method is employed for solving this class of equations, and the time-fractional derivatives are described in the sense of Caputo. Comparisons are made with those derived by Adomian's decomposition method, revealing that the homotopy perturbation method is more accurate and convenient than the Adomian's decomposition method. Furthermore, the results reveal that the approximate solution continuously depends on the time-fractional derivative and the proposed method incorporating the Caputo derivatives is a powerful and efficient technique for solving the fractional differential equations without requiring linearization or restrictive assumptions. The basis ideas presented in the paper can be further applied to solve other similar fractional partial differential equations.

关键词

reaction-diffusion equation / fractional calculus / Homotopy-perturbation method / biological population model / Mittag-Leffler function

Key words

reaction-diffusion equation / fractional calculus / Homotopy-perturbation method / biological population model / Mittag-Leffler function

引用本文

导出引用
Pradip Roul. Analytical Approach for Nonlinear Partial Differential Equations of Fractional Order[J]. 理论物理通讯, 2013, 60(03): 269-271
Pradip Roul. Analytical Approach for Nonlinear Partial Differential Equations of Fractional Order[J]. Communications in Theoretical Physics, 2013, 60(03): 269-271
中图分类号: 02.30.Jr    87.10.Ed    05.45.Yv   

参考文献

[1] F. Huang and F. Liu, J. Appl. Math. Comput. 18 (2005) 339.

[2] S. Momani and Z. Odibat, Appl. Math. Comput. 177(2) (2006) 488.

[3] S. Momani, Chaos, Solitons and Fractals 28(4) (2006) 930.

[4] F. Mainradi, Chaos, Solitons and Fractals 7 (1966) 1461.

[5] J.H. He, Comput. Meth. Appl. Mech. Eng. 167 (1998) 57.

[6] F. Mainardi, Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics', In Fractals and Fractional Calculus in Continuum Mechanics, eds. A. Carpinteri and F. Mainardi, Springer-Verlag, New York (1997) 291.

[7] K.S. Miller and B. Ross, An Introduction to the Frac-tional Calculus and Fractional Differential Equations, John Wiles and Sons, New York (1993).

[8] I. Podlubny, Fractional Differential Equations: An Intro-duction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solutions and Some of Their Applications, Academic Press, San Diego, New York (1999).

[9] D. Baleanu, A.K. Golmankhaneh, A.K. Golmankhaneh, and M.C. Baleanu, Int. J. Theor. Phys. 48 (2009) 3114.

[10] D. Baleanu, A.K. Golmankhaneh, R. Nigmatullin, and A.K. Golmankhaneh, Cent. Eur. J. Phys. 8 (2010) 120.

[11] F. Shakeri and M. Dehghan, Computers & Mathematics with Applications 54 (2007) 1197.

[12] Richard L. Magin. Computers & Mathematics with Ap-plications 59 (2010) 1586.

[13] D. Craiem, F.J. Rojo, J.M. Atienza, R.L. Armentano, and G.V. Guinea, Physics in Medicine and Biology. 53 (2008) 4543.

[14] R.L. Magin and M. Ovadia, Journal of Vibration and Control. 14 (2008) 1431.

[15] M.E. Gurtin and R.C. MacCamy, Math. Biosc. 33 (1977) 35.

[16] J. Bear, Dynamics of Fluids in Porous Media, American Elsevier, New York (1972).

[17] A. Okubo, Diffusion and Ecological Problem, Mathemat-ical Models, Biomathematics 10, Springer, Berlin (1980).

[18] Z. Odibat and S. Momani, Appl. Math. Modelling 32(12) (2008) 28.

[19] S. Momani, Appl. Math. Comput. 165 (2005) 459.

[20] Z. Odibat and S. Momani, Chaos, Solitons and Fractals 36(1) (2008) 167.

[21] J.H. Heand and Z.B. Li, Thermal Science 16(2) (2012) 331.

[22] Zheng-Biao Li, Wei-Hong Zhu, and J.H. He, Thermal Sci-ence 16(2) (2012) 335.

[23] J.H. He, Computer Methods in Applied Mechanics. 178(3-4) (1999) 257.

[24] A. Janalizadeh, A. Barari, and D.D. Ganji, Phys. Lett. A 370 (2007) 388.

[25] A.J. Muhammad-Jawad and S.T. Mohyud-Din, World Applied Sciences Journal 7 (2009) 96.

[26] Yu-Xi Wang, Hua-You Si, and Lu-Feng Mo, Mathemati-cal problems in Engineering 2008 (2008) 795838.

[27] S.T. Mohyud-Din and M.A. Noor, Application and Ap-plied Mathematics 3(2) (2008) 224.

[28] A. Yildirim and A. Kelleci, World Applied Sciences Jour-nal 7 (2009) 84.

[29] A. Sadighi, D.D. Ganji, and Y. Sabzehmeidani, Interna-tional Journal of Nonlinear Science 4(2) (2007) 92.

[30] A. Yildirim, S.A. Sezer, and Y. Kaplan, Inter. J. Numer. Meth. Fluids 66(10) (2010) 1315.

[31] R. Noorzad, A.T. Poor, and M. Omidvar, J. Appl. Sci-ences 8(2) (2008) 369.

[32] Ahmet Yildirim, Inter. J. Numer. Meth. Heat and Fluid Flow, 20(2) (2010) 186.

[33] F. Shakeri and M. Dehghan, Progress in Electromagnetic Research 78 (2008) 361.

[34] P. Roul and P. Meyer, Appl. Math. Modelling 35 (2011) 4234.

[35] H. Aminikhah and M. Salahi, Int. J. Comput. Math. 87(5) (2010) 1186.

[36] Y. Nawaz, Computers and Mathematics with Applica-tions 61 (2011) 2330.

[37] M. Ghasemi, M.T. Kajani, and E. Babolian, Applied Mathematics & Computation 188 (2007) 538.

[38] F. Shakeri and M. Dehghan, Phys. Scr. 75 (2007) 551.

[39] M.H. Holmes, Introduction to Perturbation Methods, Springer, Berlin (1995).

[40] A.H. Nayfeh, Perturbation Methods, Wiley, New York (2000).

[41] K.S. Miller and B. Ross, An Introduction to the Frac-tional Calculus and Fractional Differential Equations, Wi-ley, New York (1993).

[42] S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Application, Gor-don and Breach, Yverdon (1993).

[43] M. Caputo, Geophysical Journal of the Royal Astronom-ical Society 13 (1967) 529.

PDF(904 KB)

1897

Accesses

0

Citation

Detail

段落导航
相关文章

/