Why Matter Occupies so Large a Volume?

E.B. Manoukian

理论物理通讯 ›› 2013, Vol. 60 ›› Issue (06) : 677-686.

PDF(168 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(168 KB)
理论物理通讯 ›› 2013, Vol. 60 ›› Issue (06) : 677-686.

Why Matter Occupies so Large a Volume?

作者信息 +

Why Matter Occupies so Large a Volume?

Author information +
文章历史 +

摘要

The paper represents a rigorous treatment of the underlying quantum theory, not just in words but providing the underlying technical details, as to why matter occupies so large a volume and its intimate connection with the Pauli exclusion principle, as more and more matter is put together, as well as of the contraction or shrinkage of "bosonic matter", upon collapse, for which the Pauli exclusion is abolished. From the derived explicit bounds of integrals of powers of the particle number densities, explicit bounds on probabilities of the occurrences of the events just described are extracted. These probabilities lead one to infer the change of the "size" or extension of such matter, upon expansion or contraction, respectively, as their content is increased.

Abstract

The paper represents a rigorous treatment of the underlying quantum theory, not just in words but providing the underlying technical details, as to why matter occupies so large a volume and its intimate connection with the Pauli exclusion principle, as more and more matter is put together, as well as of the contraction or shrinkage of "bosonic matter", upon collapse, for which the Pauli exclusion is abolished. From the derived explicit bounds of integrals of powers of the particle number densities, explicit bounds on probabilities of the occurrences of the events just described are extracted. These probabilities lead one to infer the change of the "size" or extension of such matter, upon expansion or contraction, respectively, as their content is increased.

关键词

expansion of matter and the Pauli exclusion principle / contraction or shrinkage of "bosonic matter" / upon collapse

Key words

expansion of matter and the Pauli exclusion principle / contraction or shrinkage of "bosonic matter" / upon collapse

引用本文

导出引用
E.B. Manoukian. Why Matter Occupies so Large a Volume?[J]. 理论物理通讯, 2013, 60(06): 677-686
E.B. Manoukian. Why Matter Occupies so Large a Volume?[J]. Communications in Theoretical Physics, 2013, 60(06): 677-686
中图分类号: 03.65.-w    03.65.Ta    05.30.-d    02.50.Cw    02.90.+p   

参考文献

[1] P. Ehrenfest, Ansprache zur Verleihung der Lorentz medaille an Professor Wolfgang Pauli am 31 Oktober (1931); Address on award of Lorentz medal to Professor Wolfgang Pauli on 31 October (1931); ed. M.J. Klein, Paul Ehrenfest: Collected Scientific Papers, North-Holland, Amsterdam (1959) p 617; [The address appeared originally in P. Ehrenfest, Versl. Akad. Amsterdam 40 (1931) 121.]

[2] F.J. Dyson, J. Math. Phys. (NY) 8 (1967) 1538.

[3] S.T. Tomonaga, (Translator T. Oka), The Story of Spin, University of Chicago Press, Chicago (1997).

[4] F.J. Dyson and A. Lenard, J. Math. Phys. (NY) 8 (1967) 423.

[5] A. Lenard and F.J. Dyson, J. Math. Phys. (NY) 9 (1968) 698.

[6] E.H. Lieb and W.E. Thirring, Phys. Rev. Lett. 35 (1975) 657; [35 (1975) 1116(E).]

[7] E.H. Lieb, Phys. Lett. A 70 (1979) 71.

[8] E.B. Manoukian and C. Muthaporn, Progr. Theor. Phys. 107 (2002) 927.

[9] E.B. Manoukian and C. Muthaporn, Progr. Theor. Phys. 110 (2003) 385.

[10] C. Muthaporn and E.B. Manoukian, Phys. Lett. A 321 (2004) 152.

[11] E.B. Manoukian and S. Sirininlakul, Phys. Lett. A 332 (2004) 54; [337 (2004) 496(E).]

[12] E.B. Manoukian and C. Muthaporn, J. Phys. A: Math. & Gen. 36 (2003) 653.

[13] C. Muthaporn and E.B. Manoukian, Rep. Math. Phys. 53 (2004) 415.

[14] E.B. Manoukian and S. Sirininlakul, Phys. Rev. Lett. 95 (2005) 190402.

[15] E.B. Manoukian, C. Muthaporn, and S. Sirininlakul, Phys. Lett. A 352 (2006) 488.

[16] E.B. Manoukian, Quantum Theory: A Wide Spectrum, Springer, Dordrecht (2006).

[17] P. Hertel, E.H. Lieb, and W. Thirring, J. Chem. Phys. 62 (1975) 3355.

[18] J. Schwinger, Proc. Natl. Acad. Sci. U.S.A. 47 (1961) 122.

[19] V. Bargmann, Proc. Natl. Acad. Sci. U.S.A. 38 (1952) 961

[20] L. Rosenberg and L. Spruch, Phys. Rev. 120 (1960) 474.

[21] E. Teller, Rev. Mod. Phys. 34 (1962) 627.

[22] D. Hundertmark, A. Laptev, and T. Weidl, Inven. Math. 140 (2000) 693.

[23] J. Dolbeault, A. Laptev, and M. E. Loss, J. Eur. Math. Soc. 10 (2008) 1121.

[24] P. Federbush, J. Math. Phys. 16 (1975) 347.

[25] G.M. Graf, Helv. Phys. Acta 70 (1997) 72.

[26] A.S. Wightman, et al., Studies in Mathematical Physics, Princeton University Press, Princeton, New Jersey (1991) pp. 269-303.

PDF(168 KB)

986

Accesses

0

Citation

Detail

段落导航
相关文章

/