A theory of an electron affinity for an ionic cluster is proposed both in a quasiclassical approach and with quantization of a polarization electric field in a nanoparticle. A critical size of the cluster regarding in formation of an electron's autolocalized state, dependencies of energy and radius of a polaron on a cluster's size are obtained by a variational method. It has been found that binding energy of the electron in the cluster depends on a cluster's radius but a radius of electron's auto-localization does not depend on the cluster's radius and it equals to the polaron radius in a corresponding infinity crystal. A bound state of the electron in a cluster is possible only if the cluster's radius is more than the polaron radius.
Abstract
A theory of an electron affinity for an ionic cluster is proposed both in a quasiclassical approach and with quantization of a polarization electric field in a nanoparticle. A critical size of the cluster regarding in formation of an electron's autolocalized state, dependencies of energy and radius of a polaron on a cluster's size are obtained by a variational method. It has been found that binding energy of the electron in the cluster depends on a cluster's radius but a radius of electron's auto-localization does not depend on the cluster's radius and it equals to the polaron radius in a corresponding infinity crystal. A bound state of the electron in a cluster is possible only if the cluster's radius is more than the polaron radius.
关键词
cluster /
polaron /
autolocalization /
phonon comfinement
{{custom_keyword}} /
Key words
cluster /
polaron /
autolocalization /
phonon comfinement
{{custom_keyword}} /
中图分类号:
36.40.Wa
63.20.kd
63.22.Kn
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] P. Stampfli and K.H. Bennemann, Phys. Rev. Lett. 58 (1987) 2635.
[2] V.D. Lakhno, Chem. Phys. Lett. 240 (1995) 585; N.K. Balabaev, V.D. Lakhno, A.M. Molchanov, and B.P. Atanasov, J. Moleqular Electronics 6 (1990) 155; N.K. Balabaev and V.D. Lakhno, Zh. Fiz. Khimii 65 (1995) 1358; V.D. Lakhno and A.N. Pancratov, Bulletin of the Russian Academy of Sciences: Physics 64 (2000) 1172.
[3] V.D. Lakhno, Bulletin of the Russian Academy of Sciences: Physics 62 (1998) 885.
[4] U. Landman, D. Scharf, and J. Jortner, Phys. Rev. Lett. 54 (1985) 1860.
[5] E.C. Honea, M.J. Homer, P. Labastie, and R. Whetten, Phys. Rev. Lett. 63 (1989) 394.
[6] G. Rajagopal, R.N. Barnett, A. Nitzan, et al., Phys. Rev. Lett. 64 (1990) 2933.
[7] SeGi Yu, V.B. Pevzner, K.W. Kim, and M.A. Stroscio, Phys. Rev. B 58 (1998) 3580.
[8] J.J. Licari and R. Evrard, Phys. Rev. B 15 (1977) 2254.
[9] M.A. Stroscio, Phys. Rev. B 40 (1989) 6428.
[10] R.M. de la Cruz, S.W. Teitsworth, and M.A. Stroscio, Superlattices and Microstructures 13 (1993) 481.
[11] A.S. Davydov, Theory of Solids, Nauka, Moscow (1976) (in Russian).
[12] R.N. Barnett, U. Landmann, G. Markov, and A. Nitzan, J. Chem. Phys. 93 (1990) 6226.
[13] D.O. Welch, O.W. Lazareth, G.J. Dienes, and R.D. Hatcher, J. Chem. Phys. 68 (1978) 2159.
[14] A.Yu. Maslov, O.V. Proshina, and A.N. Rusina, Physics and Technics of Semiconductors 41 (2007) 844.
[15] Gerald D. Mahan, Many-Particle Physics (Physics of Solids and Liquids), 3rd edition, Plenum Publ. Corp., New York (2000).
[16] R.N. Barnett, U. Landmann, and A. Nitzan, Phys. Rev. Lett. 62 (1988) 106.
[17] R.N. Barnett, U. Landmann, and C.L. Cleveland, Phys. Rev. Lett. 59 (1987) 811.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}