Solutions of the Schrödinger Equation with Quantum Mechanical Gravitational Potential Plus Harmonic Oscillator Potential

B. I. Ita, A.I. Ikeuba, A.N. Ikot

理论物理通讯 ›› 2014, Vol. 61 ›› Issue (02) : 149-152.

PDF(145 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(145 KB)
理论物理通讯 ›› 2014, Vol. 61 ›› Issue (02) : 149-152.

Solutions of the Schrödinger Equation with Quantum Mechanical Gravitational Potential Plus Harmonic Oscillator Potential

作者信息 +

Solutions of the Schrödinger Equation with Quantum Mechanical Gravitational Potential Plus Harmonic Oscillator Potential

Author information +
文章历史 +

摘要

The solutions of the Schrödinger equation with quantum mechanical gravitational potential plus harmonic oscillator potential have been presented using the parametric Nikiforov-Uvarov method. The bound state energy eigen values and the corresponding un-normalized eigen functions are obtained in terms of Laguerre polynomials. Also a special case of the potential has been considered and its energy eigen values are obtained.

Abstract

The solutions of the Schrödinger equation with quantum mechanical gravitational potential plus harmonic oscillator potential have been presented using the parametric Nikiforov-Uvarov method. The bound state energy eigen values and the corresponding un-normalized eigen functions are obtained in terms of Laguerre polynomials. Also a special case of the potential has been considered and its energy eigen values are obtained.

关键词

Schrödinger equation / quantum mechanical gravitational potential / harmonic oscillator / Nikiforov-Uvarov method / Laguerre polynomials

Key words

Schrödinger equation / quantum mechanical gravitational potential / harmonic oscillator / Nikiforov-Uvarov method / Laguerre polynomials

引用本文

导出引用
B. I. Ita, A.I. Ikeuba, A.N. Ikot. Solutions of the Schrödinger Equation with Quantum Mechanical Gravitational Potential Plus Harmonic Oscillator Potential[J]. 理论物理通讯, 2014, 61(02): 149-152
B. I. Ita, A.I. Ikeuba, A.N. Ikot. Solutions of the Schrödinger Equation with Quantum Mechanical Gravitational Potential Plus Harmonic Oscillator Potential[J]. Communications in Theoretical Physics, 2014, 61(02): 149-152
中图分类号: 03.65.Ge    03.65.-w    03.65.Ca   

参考文献

[1] S.M. Ikhdair and R. Sever, Int. J. Mod. Phys. A 21 (2006) 6465.

[2] A.N. Ikot and L.E. Akpabio, Appl. Phys. Res. 2 (2010) 202.

[3] B.I. Ita, Nig. J. Phys. 20 (2008) 221.

[4] B.I. Ita, Int. J. Phys. Sci. 2 (2010) 141.

[5] M. Hamzavi, S.M. Ikhdair, and B.I. Ita, Phys. Scr. 85 (2012) 045007.

[6] A.N. Ikot, Chin. Phys. Lett. 29 (2012) 060307.

[7] A.N. Ikot, O.A. Awoga, and B.I. Ita, J. At. Mol. Sci. 3 (2012) 285.

[8] S. Dong and S.H. Dong, Phys. Scr. 66 (2002) 342.

[9] F. Dominguez-Adame, Phys. Lett. A 136 (1989) 175.

[10] G. Paz, Eur. J. Phys. 22 (2001) 337.

[11] M.N. Berberan-Santos, E.N. Bodunov, and L. Pogliani, J. Math. Chem. 37 (2005) 101.

[12] B.I. Ita and A.I. Ikeuba, Open J. Microphys. (2013) (accepted for publication).

[13] P. Amore and F.M. Fernandez, Acta Polytechnica 50 (2010) 17.

[14] M.H. Jasim, R.A.K. Radhi, and M.K.A. Ameer, J. Phys. 9 (2011) 90.

[15] A.N. Ikot, A.D. Antia, L.E. Akpabio, and J.A. Obu, J. Vect. Relat. 6 (2011) 65.

[16] WANG Xue-Hong, GUO Jun-Yi, and LI Yan, Commun. Theor. Phys. 58 (2012) 480.

[17] A.F. Nikiforov and V.B. Uvarov, Special Functions of Mathematical Physics, Birkhauser, Basel (1988).

[18] L.I. Scliff, Quantum Mechanics, McGraw-Hill, New York (1955)

[19] S.M. Ikhdair, J. Mod. Phys. 3 (2012) 170.

PDF(145 KB)

2427

Accesses

0

Citation

Detail

段落导航
相关文章

/