Control of Group Velocity via Spontaneous Generated Coherence and Kerr Nonlinearity

Hazrat Ali, Iftikhar Ahmad, Ziauddin

理论物理通讯 ›› 2014, Vol. 62 ›› Issue (03) : 410-416.

PDF(1399 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(1399 KB)
理论物理通讯 ›› 2014, Vol. 62 ›› Issue (03) : 410-416.

Control of Group Velocity via Spontaneous Generated Coherence and Kerr Nonlinearity

作者信息 +

Control of Group Velocity via Spontaneous Generated Coherence and Kerr Nonlinearity

Author information +
文章历史 +

摘要

A four-level N-type atomic medium is considered to study the effect of spontaneous generated coherence (SGC) and Kerr nonlinearity on light pulse propagation. A light pulse is propagating inside the medium where each atom follows four-level N-type atom-field configuration of rubidium (85Rb) atom. The atom-field interaction leads to electromagnetically induced transparency (EIT) process. The atom-field interaction is accompanied by normal dispersion and in the presence of SGC and Kerr nonlinearity the dispersion property of the proposed atomic medium is modified, which leads to enhancement of positive group index of the medium. The enhancement of positive group index then leads to slow group velocity inside the medium. A more slow group velocity is also investigated by incorporated the collective effect of SGC and Kerr nonlinearity. The control of group velocity inside a four-level N-type atomic medium via collective effect of SGC and Kerr nonlinearity is the major part of this work.

Abstract

A four-level N-type atomic medium is considered to study the effect of spontaneous generated coherence (SGC) and Kerr nonlinearity on light pulse propagation. A light pulse is propagating inside the medium where each atom follows four-level N-type atom-field configuration of rubidium (85Rb) atom. The atom-field interaction leads to electromagnetically induced transparency (EIT) process. The atom-field interaction is accompanied by normal dispersion and in the presence of SGC and Kerr nonlinearity the dispersion property of the proposed atomic medium is modified, which leads to enhancement of positive group index of the medium. The enhancement of positive group index then leads to slow group velocity inside the medium. A more slow group velocity is also investigated by incorporated the collective effect of SGC and Kerr nonlinearity. The control of group velocity inside a four-level N-type atomic medium via collective effect of SGC and Kerr nonlinearity is the major part of this work.

关键词

Kerr nonlinearity / spontaneous generated coherence and group index

Key words

Kerr nonlinearity / spontaneous generated coherence and group index

引用本文

导出引用
Hazrat Ali, Iftikhar Ahmad, Ziauddin. Control of Group Velocity via Spontaneous Generated Coherence and Kerr Nonlinearity[J]. 理论物理通讯, 2014, 62(03): 410-416
Hazrat Ali, Iftikhar Ahmad, Ziauddin. Control of Group Velocity via Spontaneous Generated Coherence and Kerr Nonlinearity[J]. Communications in Theoretical Physics, 2014, 62(03): 410-416
中图分类号: 42.65.An    42.50.Gy    42.65.-k   

参考文献

[1] S.E. Harris, J.E. Field, and A. Imamo?lu, Phys. Rev. Lett. 64 (1990) 1107.

[2] M. Xiao, Y.Q. Li, S.Z. Jin, and J.G. Banacloche, Phys. Rev. Lett. 74 (1995) 666.

[3] C. Liu, Z. Dutton, C.H. Behroozi, and L.V. Hau, Nature (London) 409 (2001) 490.

[4] O. Kocharovskaya, Y. Rostovtsev, and M.O. Scully, Phys. Rev. Lett. 86 (2001) 628.

[5] L.V. Hau, S. E. Harris, Z. Dutton, and C.H. Behroozi, Nature (London) 397 (1999) 594.

[6] M.M. Kash, V.A. Sautenkov, A.S. Zibrov, L. Hollberg, George R. Welch, M.D. Lukin, Y. Rostovtsev, E.S. Fry, and M.O. Scully, Phys. Rev. Lett. 82 (1999) 5229.

[7] M.S. Bigelow, N.N. Lepeshkin, and R.W. Boyd, Phys. Rev. Lett. 90 (2003) 113903.

[8] R.W. Boyd, Nonlinear Optics, 2nd edition, Academic, San Diego (2003).

[9] J.F. Roch, K. Vigneron, Ph. Grelu, A. Sinatra, J.-Ph. Poizat, and Ph. Grangier, Phys. Rev. Lett. 78 (1997) 634.

[10] Q.A. Turchette, C.J. Hood, W. Lange, H. Mabuchi, and H.J. Kimble, Phys. Rev. Lett. 75 (1995) 4710.

[11] C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, Phys. Rev. Lett. 90 (2003) 197902.

[12] C. Hang, Y. Li, L. Ma, and G. Huang, Phys. Rev. A 74 (2006) 012319.

[13] S.E. Harris and Y. Yamamoto, Phys. Rev. Lett. 81 (1998) 3611.

[14] B. He, Y. Ren, and J.A. Bergou, Phys. Rev. A 79 (2009) 052323.

[15] Y.B. Sheng, L. Zhou, S.M. Zhao, and B.Y. Zheng, Phys. Rev. A 85 (2012) 012307.

[16] Y.B. Sheng, L. Zhou, and S.M. Zhao, Phys. Rev. A 85 (2012) 042302.

[17] Q. Lin and B. He, Phys. Rev. A 80 (2009) 042310.

[18] K. Nemoto and W.J. Munro, Phys. Rev. Lett. 93 (2004) 250502.

[19] H. Jeong, Phys. Rev. A 72 (2005) 034305.

[20] B. He, M. Nadeem, and J.A. Bergou, Phys. Rev. A 79 (2009) 035802.

[21] B. He, A.V. Sharypov, J. Sheng, C. Simon, and M. Xiao, Phys. Rev. Lett. 112 (2014) 133606.

[22] Julio Gea-Banacloche, Phys. Rev. A 81 (2010) 043823.

[23] B. He, Q. Lin, and C. Simon, Phys. Rev. A 83 (2011) 053826.

[24] B. He and A. Scherer, Phys. Rev. A 85 (2012) 033814.

[25] M. Fleischhauer, A. Imamo?lu, and J. P. Marangos, Rev. Mod. Phys. 77 (2005) 633.

[26] Y. Wu and L. Deng, Phys. Rev. Lett. 93 (2004) 143904.

[27] Y. Wu and L. Deng, Opt. Lett. 29 (2004) 2064.

[28] G. Huang, L. Deng, and M.G. Payne, Phys. Rev. E 72 (2005) 016617.

[29] L. Deng, M.G. Payne, G. Huang, and E.W. Hagley, Phys. Rev. E 72 (2005) 055601(R).

[30] T.N. Dey, and G.S. Agarwal, Phys. Rev. A 76 (2007) 015802.

[31] H. Schmidt and A. Imamo?lu, Opt. Lett. 21 (1996) 1936.

[32] Y. Wu and L. Deng, Phys. Rev. Lett. 93 (2004) 143904.

[33] G. Huang, L. Deng, and M.G. Payne, Phys. Rev. E 72 (2005) 016617.

[34] Y.P. Niu and S.Q. Gong, Phys. Rev. A 73 (2006) 053811.

[35] J. Javanainen, Europhys. Lett. 17 (1992) 407.

[36] P. Zhou and S. Swain, Phys. Rev. Lett. 77 (1996) 3995.

[37] H. Ali, Ziauddin, and I. Ahmad, Commun. Theor. Phys. 60 (2013) 87.

[38] H. Ali, Ziauddin, and I. Ahmad, Laser Phys. 24 (2014) 025201.

[39] M. Abbas, Ziauddin, and S. Qamar, Laser Phys. Lett. 11 (2014) 015201.

[40] S. Menon and G.S. Agarwal, Phys. Rev. A 57 (1998) 4041.

[41] H. Kang and Y. Zhu, Phys. Rev. Lett. 91 (2003) 093601.

[42] M.O. Scully and M.S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge (1997).

[43] Sunish Menon and G.S. Agarwal, Phys. Rev. A 57 (1998) 4014.

[44] J.E. Heebner, R.W. Boyd, and Q. Park, Phys. Rev. E 65 (2002) 2629.

[45] M.D. Lukin and A. Imamo?lu, Phys. Rev. Lett. 84 (2000) 1419.

[46] C. Liu, Z. Dutton, C.H. Behroozi, and L.V. Hau, Nature (London) 409 (2001) 490.

[47] Z. Shi, R.W. Boyd, D.J. Gauthier, and C.C. Dudley, Opt. Lett. 32 (2007) 915.

[48] S.T. Johns, D.D. Norton, C.W. Keefer, R. Erdmann, and R.A. Soref, Electronics Lett. 29 (1993) 555.

[49] R.D. Esman, M.Y. Frankel, J.L. Dexter, L. Goldberg, M.G. Parent, D. Stilwell, and D.G. Cooper, IEEE Photon. Tech. Lett. 5 (1993) 1347.

[50] M. Saharai, H. Tajalli, K.T. Kapale, and M.S. Zubairy, Phys. Rev. A 70 (2004) 023813.

PDF(1399 KB)

1139

Accesses

0

Citation

Detail

段落导航
相关文章

/