Propagation of Electron Acoustic Soliton, Periodic and Shock Waves in Dissipative Plasma with a q-Nonextensive Electron Velocity Distribution

A. M. El-Hanbaly, E. K. El-Shewy, A. Elgarayhi, A. I. Kassem

理论物理通讯 ›› 2015, Vol. 64 ›› Issue (05) : 529-536.

PDF(201 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(201 KB)
理论物理通讯 ›› 2015, Vol. 64 ›› Issue (05) : 529-536.

Propagation of Electron Acoustic Soliton, Periodic and Shock Waves in Dissipative Plasma with a q-Nonextensive Electron Velocity Distribution

作者信息 +

Propagation of Electron Acoustic Soliton, Periodic and Shock Waves in Dissipative Plasma with a q-Nonextensive Electron Velocity Distribution

Author information +
文章历史 +

摘要

The nonlinear properties of small amplitude electron-acoustic (EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma with nonextensive distribution for hot electrons have been investigated. A reductive perturbation method used to obtain the Kadomstev-Petviashvili-Burgers equation. Bifurcation analysis has been discussed for non-dissipative system in the absence of Burgers term and reveals different classes of the traveling wave solutions. The obtained solutions are related to periodic and soliton waves and their behavior are shown graphically. In the presence of the Burgers term, the EXP-function method is used to solve the Kadomstev-Petviashvili-Burgers equation and the obtained solution is related to shock wave. The obtained results may be helpful in better conception of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.

Abstract

The nonlinear properties of small amplitude electron-acoustic (EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma with nonextensive distribution for hot electrons have been investigated. A reductive perturbation method used to obtain the Kadomstev-Petviashvili-Burgers equation. Bifurcation analysis has been discussed for non-dissipative system in the absence of Burgers term and reveals different classes of the traveling wave solutions. The obtained solutions are related to periodic and soliton waves and their behavior are shown graphically. In the presence of the Burgers term, the EXP-function method is used to solve the Kadomstev-Petviashvili-Burgers equation and the obtained solution is related to shock wave. The obtained results may be helpful in better conception of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.

关键词

reductive perturbation method / Kadomstev-Petviashvili-Burgers (KP-Burgers) equation / electron-acoustic solitary and shock waves

Key words

electron-acoustic solitary and shock waves / reductive perturbation method / Kadomstev-Petviashvili-Burgers (KP-Burgers) equation

引用本文

导出引用
A. M. El-Hanbaly, E. K. El-Shewy, A. Elgarayhi, . Propagation of Electron Acoustic Soliton, Periodic and Shock Waves in Dissipative Plasma with a q-Nonextensive Electron Velocity Distribution[J]. 理论物理通讯, 2015, 64(05): 529-536
A. M. El-Hanbaly, E. K. El-Shewy, A. Elgarayhi, et al. Propagation of Electron Acoustic Soliton, Periodic and Shock Waves in Dissipative Plasma with a q-Nonextensive Electron Velocity Distribution[J]. Communications in Theoretical Physics, 2015, 64(05): 529-536
中图分类号: 43.25.+y    47.35.Fg    47.40.Nm   

参考文献

[1] S.S. Duha and A.A. Mamun, Phys. Lett. A 373 (2009) 1287.

[2] S. Yasmin, M. Asaduzzaman, and A.A. Mamun, Astrophys. Space Sci. 345 (2013) 291.

[3] N.S. Saini and R. Kohli, Astrophys. Space Sci. 348 (2013) 483.

[4] M. Tribeche and M. Bacha, Phys. Plasmas 20 (2013) 103704.

[5] K. Watanabe and T. Taniuti, J. Phys. Soc. Jpn. 43 (1977) 1819.

[6] S. Ikezawa and Y. Nakamura, J. Phys. Soc. Jpn. 50 (1981) 962.

[7] N. Dubouloz, R. Pottelette, M. Malingre, G. Holmgren, and P.A. Lindqvist, J. Geophys. Res. 96 (1991) 3565.

[8] F.S. Mozer and C.A. Kletzig, Geophys. Res. Lett. 25 (1998) 1629.

[9] R. Pottelette, R.E. Ergun, R.A. Truemann, M. Bertho-mier, C.W. Carlson, J.P. McFadden, and I. Roth, Geophys. Res. Lett. 26 (1999) 2629.

[10] T. Miyake, Y. Omura, and H. Matsumoto, J. Geophys. Res. 105 (2000) 23239.

[11] A.A. Mamun and P.K. Shukla, J. Geophys. Res. 107(A7) (2002) 1135.

[12] A.P. Kakad, S.V. Singh, R.V. Reddy, G.S. Lakhina, S.G. Tagare, and F. Verheest, Phys. Plasmas 14 (2007) 052305.

[13] E.K. El-Shewy, Astrophys. Space Sci. 335 (2011) 389.

[14] S.A. El-Wakil, A.M. El-Hanbaly, A. Elgarayh, E.K. El-Shewy, and A.I. Kassem, Adv. Space Res. 54 (2014a) 1786.

[15] M. Dutta, S. Ghosh, and N. Chakrabarti, Phys. Rev. E 86 (2012) 066408.

[16] H.R. Pakzad and M. Tribeche, Astrophys. Space Sci. 330 (2010) 95.

[17] M.R. Gupta, S. Sarkar, S. Ghosh, M. Debnath, and M. Khan, Phys. Rev. E 63 (2001) 046406.

[18] M. Tribeche and M. Bacha, Phys. Plasmas 17 (2010) 073701.

[19] M. Shahmansouri and M. Tribeche, Astrophys. Space Sci. 346 (2013) 165.

[20] W.S. Duan, Phys. Plasmas 8 (2001) 3583.

[21] T. Saha, P. Chatterjee, and M.R. Amin, Z. Naturforsch. 64a (2009) 370.

[22] H. Rehman, A. Shah, S. Mahmood, and Q. Haque, Phys. Plasmas 18 (2011) 122302.

[23] E.K. El-Shewy, M.I. Abo el Maaty, H.G. Abdelwahed, and M.A. Elmessary, Astrophys. Space Sci. 332 (2011) 179.

[24] S.A. El-Wakil, A.M. El-Hanbaly, E.K. El-Shewy, and I.S. El-Kamash, Astrophys. Space Sci. 349 (2014b) 197.

[25] M. Tribeche, L. Djebarni, and R. Amour, Phys. Plasmas 17 (2010) 042114.

[26] M. Tribeche and P.K. Shukla, Phys. Plasmas 18 (2011) 103702.

[27] B. Sahu and M. Tribeche, Astrophys. Space Sci. 338 (2012) 259.

[28] C. Tsallis, J. Stat. Phys. 52 (1988) 479.

[29] J.A.S. Lima, R.Jr. Silva, and J. Santos, Phys. Rev. E 61 (2000) 3260.

[30] A. Danehkar, N. S. Saini, M.A. Hellberg, and I. Kourakis, Phys. Plasmas 18 (2011) 072902.

[31] H. Washimi and T. Taniuti, Phys. Rev. Lett. 17 (1966) 996.

[32] X.H. Wu and J.H. He, Chaos, Solitons and Fractals 38 (2008) 903.

[33] A. Ebaid, Phys. Lett. A 365 (2007) 213.

[34] S. Mahmood and H. Ur-Rehman, Phys. Plasmas 17 (2010) 072305.

[35] A.M. El-Hanbaly, J. Phys. A 36 (2003) 8311.

[36] A.M. El-Hanbaly and M. Abdou, J. Appl. Math. Comput. 182 (2006) 301.

[37] J.H. He and X.H. Wu, Chaos, Solitons and Fractals 30 (2006) 700.

[38] H.G. Abdelwahed and E.K. El-Shewy, Commun. Theor. Phys. 60 (2013) 445.

PDF(201 KB)

980

Accesses

0

Citation

Detail

段落导航
相关文章

/