Dynamics of Information Entropies of Atom-Field Entangled States Generated via the Jaynes-Cummings Model

R. Pakniat, M. K. Tavassoly, M. H. Zandi

理论物理通讯 ›› 2016, Vol. 65 ›› Issue (03) : 266-272.

PDF(1557 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(1557 KB)
理论物理通讯 ›› 2016, Vol. 65 ›› Issue (03) : 266-272.

Dynamics of Information Entropies of Atom-Field Entangled States Generated via the Jaynes-Cummings Model

  • R. Pakniat1, M. K. Tavassoly2,3,4, M. H. Zandi1
作者信息 +

Dynamics of Information Entropies of Atom-Field Entangled States Generated via the Jaynes-Cummings Model

  • R. Pakniat1, M. K. Tavassoly2,3,4, M. H. Zandi1
Author information +
文章历史 +

摘要

In this paper we have studied the dynamical evolution of Shannon information entropies in position and momentum spaces for two classes of (nonstationary) atom-field entangled states, which are obtained via the Jaynes-Cummings model and its generalization. We have focused on the interaction between two- and Ξ-type three-level atoms with the single-mode quantized field. The three-dimensional plots of entropy densities in position and momentum spaces are presented versus corresponding coordinates and time, numerically. It is observed that for particular values of the parameters of the systems, the entropy squeezing in position space occurs. Finally, we have shown that the well-known BBM (Beckner, Bialynicki-Birola and Mycielsky) inequality, which is a stronger statement of the Heisenberg uncertainty relation, is properly satisfied.

Abstract

In this paper we have studied the dynamical evolution of Shannon information entropies in position and momentum spaces for two classes of (nonstationary) atom-field entangled states, which are obtained via the Jaynes-Cummings model and its generalization. We have focused on the interaction between two- and Ξ-type three-level atoms with the single-mode quantized field. The three-dimensional plots of entropy densities in position and momentum spaces are presented versus corresponding coordinates and time, numerically. It is observed that for particular values of the parameters of the systems, the entropy squeezing in position space occurs. Finally, we have shown that the well-known BBM (Beckner, Bialynicki-Birola and Mycielsky) inequality, which is a stronger statement of the Heisenberg uncertainty relation, is properly satisfied.

关键词

Shannon information entropy / entropy squeezing / BBM inequality / Jaynes-Cummings model

Key words

Shannon information entropy / entropy squeezing / BBM inequality / Jaynes-Cummings model

引用本文

导出引用
R. Pakniat, M. K. Tavassoly, M. H. Zandi. Dynamics of Information Entropies of Atom-Field Entangled States Generated via the Jaynes-Cummings Model[J]. 理论物理通讯, 2016, 65(03): 266-272
R. Pakniat, M. K. Tavassoly, M. H. Zandi. Dynamics of Information Entropies of Atom-Field Entangled States Generated via the Jaynes-Cummings Model[J]. Communications in Theoretical Physics, 2016, 65(03): 266-272
中图分类号: 03.65.-w    42.50.Dv    42.50.Ct   

参考文献

[1] E.T. Jaynes and F.W. Cummings, Proc. IEEE 51 (1963) 89.

[2] B.W. Shore and P.L. Knight, J. Mod. Opt. 40 (1993) 1195.

[3] R.N. Daneshmand and M.K. Tavassoly, Laser Phys. 25 (2015) 055203.

[4] E. Solano, G.S. Agarwal, and H. Walther, Phys. Rev. Lett. 90 (2003) 027903.

[5] M.S. Abdalla, M. Ahmed, and A.S. Obada, Physica A 70 (1991) 393.

[6] H.R. Baghshahi, M.K. Tavassoly, and M.J. Faghihi, Laser Phys. 24 (2014) 125203.

[7] H.R. Baghshahi, M.K. Tavassoly, and M.J. Faghihi, Int. J. Theor. Phys. 54 (2014) 2839.

[8] M.J. Faghihi, M.K. Tavassoly, and M.B. Harouni, Laser Phys. 24 (2014) 045202.

[9] S.R. Miry and M.K. Tavassoly, Phys. Scr. 85 (2012) 035404.

[10] H.R. Baghshahi, M.K. Tavassoly, and A. Behjat, Commun. Theor. Phys. 62 (2014) 430.

[11] A. Joshi and S. Lawande, Phys. Rev. A 48 (1993) 2276.

[12] M.J. Faghihi, M.K. Tavassoly, and M.R. Hooshmandasl, J. Opt. Soc. Am. B 30 (2013) 1109.

[13] A.H. Toor and M.S. Zubairy, Phys. Rev. A 45 (1992) 4951.

[14] W.B. Cardoso, A.T. Avelar, B. Baseia, and N.G. de Almeida, J. Phys. B:At. Mol. Opt. Phys. 42 (2009) 195507.

[15] W. Cardoso, A. Avelar, B. Baseia, et al., Opt. Commun. 284 (2011) 1086.

[16] S. Barnett, Quantum Information, Oxford University Press, New York (2009).

[17] C.E. Shannon, Bell Syst. Tech. J. 27 (1948) 623.

[18] J.B.M. Uffink and J. Hilgevoord, Found. Phys. 15 (1985) 925.

[19] M.D. Srinivas, Pramana 24 (1985) 673.

[20] H. Maassen and J.B.M. Uffink, Phys. Rev. Lett. 60 (1988) 1103.

[21] I. Bia lynicki-Birula and J. Mycielski, Commun. Math. Phys. 44 (1975) 129.

[22] W. Beckner, Ann. Math. 102 (1975) 159.

[23] V.V. Dodonov and V.I. Manko, Invariants and Evolution of Non-Stationary Quantum Systems, M.A. Markov, Nova Science Publishers, Commack, NY (1989).

[24] M.A. Man'ko and V.I. Man'ko, AIP Conf. Proc. 1334 (2011) 217.

[25] V. Majernik and T. Opatrný, J. Phys. A:Math. Gen. 29 (1996) 2187.

[26] R. Atre, A. Kumar, N. Kumar, and P.K. Panigrahi, Phys. Rev. A 69(2004) 052107.

[27] E. Aydiner, C. Orta, and R. Sever, Int. J. Mod. Phys. B 22 (2008) 231.

[28] A. Ghasemi, M.r. Hooshmandasl, and M.K. Tavassoly, Phys. Scr. 84 (2011) 035007.

[29] X.D. Song, G.H. Sun, and S.H. Dong, Phys. Lett. A 379 (2015) 1402.

[30] M.O. Scully and M.S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge (1997).

[31] J.J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, Reading (1994).

PDF(1557 KB)

886

Accesses

0

Citation

Detail

段落导航
相关文章

/