Size Dependent Heat Conduction in One-Dimensional Diatomic Lattices

Tejal N. Shah, P. N. Gajjar

理论物理通讯 ›› 2016, Vol. 65 ›› Issue (04) : 517-522.

PDF(604 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(604 KB)
理论物理通讯 ›› 2016, Vol. 65 ›› Issue (04) : 517-522.

Size Dependent Heat Conduction in One-Dimensional Diatomic Lattices

  • Tejal N. Shah1, P. N. Gajjar2
作者信息 +

Size Dependent Heat Conduction in One-Dimensional Diatomic Lattices

  • Tejal N. Shah1, P. N. Gajjar2
Author information +
文章历史 +

摘要

We study the size dependency of heat conduction in one-dimensional diatomic FPU-β lattices and establish that for low dimensional material, contribution from optical phonons is found more effective to the thermal conductivity and enhance heat transport in the thermodynamic limit N→∞ . For the finite size, thermal conductivity of 1D diatomic lattice is found to be lower than 1D monoatomic chain of the same size made up of the constituent particle of the diatomic chain. For the present 1D diatomic chain, obtained value of power divergent exponent of thermal conductivity 0.428±0.001 and diffusion exponent 1.2723 lead to the conclusions that increase in the system size, increases the thermal conductivity and existence of anomalous energy diffusion. Existing numerical data supports our findings.

Abstract

We study the size dependency of heat conduction in one-dimensional diatomic FPU-β lattices and establish that for low dimensional material, contribution from optical phonons is found more effective to the thermal conductivity and enhance heat transport in the thermodynamic limit N→∞ . For the finite size, thermal conductivity of 1D diatomic lattice is found to be lower than 1D monoatomic chain of the same size made up of the constituent particle of the diatomic chain. For the present 1D diatomic chain, obtained value of power divergent exponent of thermal conductivity 0.428±0.001 and diffusion exponent 1.2723 lead to the conclusions that increase in the system size, increases the thermal conductivity and existence of anomalous energy diffusion. Existing numerical data supports our findings.

关键词

heat conduction / thermal conductivity / FPU-&beta / diatomic lattice / nonequilibrium molecular dynamics

Key words

heat conduction / thermal conductivity / FPU-β diatomic lattice / nonequilibrium molecular dynamics

引用本文

导出引用
Tejal N. Shah, P. N. Gajjar. Size Dependent Heat Conduction in One-Dimensional Diatomic Lattices[J]. 理论物理通讯, 2016, 65(04): 517-522
Tejal N. Shah, P. N. Gajjar. Size Dependent Heat Conduction in One-Dimensional Diatomic Lattices[J]. Communications in Theoretical Physics, 2016, 65(04): 517-522
中图分类号: 44.10.+i    05.45.-a    05.70.Ln    02.70.-c    66.70.+f    63.20.Ry   

参考文献

[1] M. Terraneo, M. Peyrard, and G. Casati, Phys. Rev. Lett. 88 (2002) 094302.

[2] Zhi-Gang Shao, L. Yang, Ho-Kei Chan, and B. Hu, Phys. Rev. E 79 (2009) 061119.

[3] M. Hu, P. Keblinski, and B. Li, Appl. Phys. Lett. 92 (2008) 211908.

[4] Tejal N. Shah and P. N. Gajjar, Phys. Lett. A 376 (2012) 412.

[5] T.N. Shah and P.N. Gajjar, Euro. Phys. J. B 86 (2013) 497; Tejal N. Shah and P.N. Gajjar, Commun. Theor. Phys. 59 (2013) 361.

[6] B. Liang, B. Yuan, and J. Chun Cheng, Phys. Rev. Lett. 103 (2009) 104301.

[7] B. Li, L. Wang, and G. Casati, Phys. Rev. Lett. 93 (2004) 184301.

[8] P.P. Patel and P.N. Gajjar, Phys. Lett. A 378 (2014) 2524.

[9] B. Li, L. Wang, and G. Casati, Appl. Phys. Lett. 88 (2006) 143501.

[10] P.P. Patel and P.N. Gajjar, Modeling of One-Dimensional Thermal Transistor, Proceedings of Multiscale Modeling of Materials and Devices, DAE-BRNS, BARC, INDIA 133 (2014).

[11] L. Wang and B. Li, Phys. Rev. Lett. 99 (2007) 177208.

[12] L. Wang and B. Li, Phys. Rev. Lett. 101 (2008) 267203.

[13] R. Marthe, A.M. Jayannavar, and A. Dhar, Phys. Rev. E 75 (2007) 030103.

[14] S. Lepri, R. Livi, and A. Politi, Phys. Rep. 377 (2003) 1.

[15] A. Dhar, Adv. Phys. 57 (2008) 457.

[16] T. Mai and O. Narayan, Phys. Rev. E 73 (2006) 061202.

[17] Shunda Chen, Jiao Wang, Giulio Casati, and Giuliano Benenti, Phys. Rev. E 90 (2014) 032134.

[18] Z. Rieder, J.L. Lebowitz, and E. Lieb, J. Math. Phys. 8 (1967) 1073.

[19] A.J. O'Cornor and J.L. Lebowitz, J. Math. Phys. 15 (1974) 692.

[20] A. Casher and J.L. Lebowitz, J. Math. Phys. 12 (1971) 1701.

[21] A.V. Savin and O.V. Gendelman, Phys. Rev. E 67 (2003) 041205.

[22] H. Kaburaki and M. Machida, Phys. Lett. A 181 (1993) 85.

[23] S. Lepri, R. Livi, and A. Politi, Phys. Rev. Lett. 78 (1997) 1896.

[24] A. Fillipov, B. Hu, B. Li, and A. Zeltser, J. Phys. A 31 (1998) 7719.

[25] A.V. Savin and Y.A. Kosevich, Phys. Rev. E 89 (2014) 032102.

[26] S.G. Das, A. Dhar, and O. Narayan, J. Stat. Phys. 154 (2013) 204.

[27] A. Dhar, Phys. Rev. Lett. 86 (2001) 3554.

[28] G. Casati and T. Prosen, Phys. Rev. E 67 (2003) 015203(R).

[29] P. Grassberger, W. Nadler, and L. Yang, Phys. Rev. Lett. 89 (2002) 180601.

[30] B. Li and H. Zhao, Phys. Rev. Lett. 89 (2002) 079401.

[31] B. Li, G. Casati, and J. Wang, Phys. Rev. E 67 (2003) 021204.

[32] L. Wang, B. Hu, and B. Li, Phys. Rev. E 88 (2013) 052112.

[33] B. Li and J. Wang, Phys. Rev. Lett. 91 (2003) 044301.

[34] F. Mokross and H. Buttner, J. Phys. C:Solid State Physics 16 (1983) 4539.

[35] E.A. Jackson and A.D. Mistriotis, J. Phys. Condens. Matter 1 (1989) 1223; E.A. Jackson and A.D. Mistriotis, J. Phys. Condens. Matter 2 (1990) 7575.

[36] G. Casati, J. Ford, F. Vivaldi, and W.M. Visscher, Phys. Rev. Lett. 52 (1984) 1861.

[37] T. Hatano, Phys. Rev. E 59 (1999) R1.

[38] B. Li, G. Casati, J. Wang, and T. Prosen, Phys. Rev. Lett. 92 (2004) 254301.

[39] T. Mai, A. Dhar, and O. Narayan, Phys. Rev. Lett. 98 (2007) 184301.

[40] O.V. Gendeliman and L.I. Manevich, Sov. Phys. JETP 75 (1992) 271.

[41] V. Kannsan, A. Dhar, and J.L. Lebwitz, Phys. Rev. E 85 (2012) 041118.

[42] E. Fermi, J. Pasta, and S. Ulam, Los Alamos, (1955) Studies of Nonlinear Problems, I. Los Alamos Report No. LA-1940, Published Later in Collected Papers of Enrico Fermi, E. Segre (Ed.), University of Chicago Press, Chicago (1965) v. 2, p. 78.

[43] B. Hu, B. Li, and H. Zhao, Phys. Rev. E 61 (2000) 3828.

[44] Tejal N. Shah, Shreya Shah, and P.N. Gajjar, PRAJ??-Journal of Pure and Applied Sciences 20 (2012) 105.

[45] Shreya Shah, Tejal N. Shah, and P.N. Gajjar, Solid State Phenomena 209 (2014) 129.

[46] N. Yang, N. Li, L. Wang, and B. Li, Phys. Rev. B 76 (2007) 020301.

[47] T. Verheggen, Commun. Math. Phys. 68 (1979) 69.

[48] M. Torkai and T. Odagaki, J. Phys. Condens. Matter 14 (2002) 503.

[49] P.L. Garrido, P.I. Hurtado, and B. Nadrowski, Phys. Rev. Lett. 86 (2001) 5486.

PDF(604 KB)

1045

Accesses

0

Citation

Detail

段落导航
相关文章

/