Nijenhuis Operators on n-Lie Algebras

刘杰锋, 生云鹤, 周彦秋, 白承铭

理论物理通讯 ›› 2016, Vol. 65 ›› Issue (06) : 659-670.

PDF(213 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(213 KB)
理论物理通讯 ›› 2016, Vol. 65 ›› Issue (06) : 659-670.

Nijenhuis Operators on n-Lie Algebras

  • 刘杰锋1, 生云鹤2, 周彦秋2, 白承铭3
作者信息 +

Nijenhuis Operators on n-Lie Algebras

  • Jie-Feng Liu1, Yun-He Sheng2, Yan-Qiu Zhou2, Cheng-Ming Bai3
Author information +
文章历史 +

摘要

In this paper, we study (n-1)-order deformations of an n-Lie algebra and introduce the notion of a Nijenhuis operator on an n-Lie algebra, which could give rise to trivial deformations. We prove that a polynomial of a Nijenhuis operator is still a Nijenhuis operator. Finally, we give various constructions of Nijenhuis operators and some examples.

Abstract

In this paper, we study (n-1)-order deformations of an n-Lie algebra and introduce the notion of a Nijenhuis operator on an n-Lie algebra, which could give rise to trivial deformations. We prove that a polynomial of a Nijenhuis operator is still a Nijenhuis operator. Finally, we give various constructions of Nijenhuis operators and some examples.

关键词

Nijenhuis operators / n-Lie algebras / deformations / Rota-Baxter operators

Key words

Nijenhuis operators / n-Lie algebras / deformations / Rota-Baxter operators

引用本文

导出引用
刘杰锋, 生云鹤, 周彦秋, 白承铭. Nijenhuis Operators on n-Lie Algebras[J]. 理论物理通讯, 2016, 65(06): 659-670
Jie-Feng Liu, Yun-He Sheng, Yan-Qiu Zhou, Cheng-Ming Bai. Nijenhuis Operators on n-Lie Algebras[J]. Communications in Theoretical Physics, 2016, 65(06): 659-670
中图分类号: 02.30.Ik    02.10.-v    02.10.Xm    11.25.Yb    45.20.Jj   

参考文献

[1] V.T. Filippov, Sib. Mat. Zh. 26 (1985) 126.

[2] P. Gautheron, Lett. Math. Phys. 37 (1996) 103.

[3] Y. Nambu, Phys. Rev. D7 (1973) 2405.

[4] L. Takhtajan, Commun. Math. Phys. 160 (1994) 295.

[5] R. Bai, Y. Wu, J. Li, and H. Zhou, J. Phys. A. 45 (2012) 475206.

[6] J.M. Casas, E. Khmaladze, and M. Ladra, Commun. Algebra. 34 (2006) 2769.

[7] J.M. Casas, E. Khmaladze, and M. Ladra, J. Pure Appl. Algebra. 214 (2010) 797.

[8] Y. Daletskii and L. Takhtajan, Lett. Math. Phys. 39 (1997) 127.

[9] J.A. de Azcárraga, and J.M. Izquierdo, J. Math. Phys. 52 (2011) 023521.

[10] J.A. de Azcárraga and J.M. Izquierdo, J. Phys. Conf. Ser. 175 (2009) 012001.

[11] Sh. M. Kasymov, Algebra. I. Logika. 26 (1987) 277.

[12] M. Rotkiewicz, Extracta Math. 20 (2005) 219.

[13] L. Takhtajan, St. Petersburg Math. J. 6 (1995) 429.

[14] C. Bai, L. Guo, and Y. Sheng, Bialgebras, Classical Yang-Baxter Equation and Manin Triple for 3-Lie Algebras, arXiv:math-ph/1604.05996.

[15] R. Bai, C. Bai, and J. Wang, J. Math. Phys. 51 (2010) 063505.

[16] R. Bai, L. Guo, J. Li, and Y. Wu, J. Math. Phys. 54 (2013) 064504.

[17] J. Figueroa-O’Farrill, J. Math. Phys. 50 (2009) 113514.

[18] T. Zhang, Deformations and Extensions of 3-Lie Algebras, arXiv:1401.4656.

[19] J. Bagger and N. Lambert, Phys. Rev. D 79 (2009) 025002.

[20] S. Cherkis and C. Sämann, Phys. Rev. D 78 (2008) 066019.

[21] J. Gomis, D. Rodríguez-Gómez, M. Van Raamsdonk, and H. Verlinde, J. High Energy Phys. 8 (2008) 094.

[22] P. Ho, R. Hou, and Y. Matsuo, J. High Energy Phys. 6 (2008) 020.

[23] G. Papadopoulos, J. High Energy Phys. 5 (2008) 054.

[24] M. Van Raamsdonk, J. High Energy Phys. 5 (2008) 105.

[25] J.A. de Azcárraga and J.M. Izquierdo, J. Phys. A 43 (2010) 293001.

[26] M. Gerstenhaber, Ann. Math. 79 (1964) 59.

[27] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, Chichester (1993).

[28] B.A. Kupershmidt, J. Nonlinear Math. Phys. 6 (1999) 448.

基金

Supported by National Natural Science Foundation of China under Grant Nos. 11471139, 11271202, 11221091, 11425104, Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20120031110022, and National Natural Science Foundation of Jilin Province under Grant No. 20140520054JH


PDF(213 KB)

903

Accesses

0

Citation

Detail

段落导航
相关文章

/