In this paper, we study (n-1)-order deformations of an n-Lie algebra and introduce the notion of a Nijenhuis operator on an n-Lie algebra, which could give rise to trivial deformations. We prove that a polynomial of a Nijenhuis operator is still a Nijenhuis operator. Finally, we give various constructions of Nijenhuis operators and some examples.
Abstract
In this paper, we study (n-1)-order deformations of an n-Lie algebra and introduce the notion of a Nijenhuis operator on an n-Lie algebra, which could give rise to trivial deformations. We prove that a polynomial of a Nijenhuis operator is still a Nijenhuis operator. Finally, we give various constructions of Nijenhuis operators and some examples.
关键词
Nijenhuis operators /
n-Lie algebras /
deformations /
Rota-Baxter operators
{{custom_keyword}} /
Key words
Nijenhuis operators /
n-Lie algebras /
deformations /
Rota-Baxter operators
{{custom_keyword}} /
中图分类号:
02.30.Ik
02.10.-v
02.10.Xm
11.25.Yb
45.20.Jj
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] V.T. Filippov, Sib. Mat. Zh. 26 (1985) 126.
[2] P. Gautheron, Lett. Math. Phys. 37 (1996) 103.
[3] Y. Nambu, Phys. Rev. D7 (1973) 2405.
[4] L. Takhtajan, Commun. Math. Phys. 160 (1994) 295.
[5] R. Bai, Y. Wu, J. Li, and H. Zhou, J. Phys. A. 45 (2012) 475206.
[6] J.M. Casas, E. Khmaladze, and M. Ladra, Commun. Algebra. 34 (2006) 2769.
[7] J.M. Casas, E. Khmaladze, and M. Ladra, J. Pure Appl. Algebra. 214 (2010) 797.
[8] Y. Daletskii and L. Takhtajan, Lett. Math. Phys. 39 (1997) 127.
[9] J.A. de Azcárraga, and J.M. Izquierdo, J. Math. Phys. 52 (2011) 023521.
[10] J.A. de Azcárraga and J.M. Izquierdo, J. Phys. Conf. Ser. 175 (2009) 012001.
[11] Sh. M. Kasymov, Algebra. I. Logika. 26 (1987) 277.
[12] M. Rotkiewicz, Extracta Math. 20 (2005) 219.
[13] L. Takhtajan, St. Petersburg Math. J. 6 (1995) 429.
[14] C. Bai, L. Guo, and Y. Sheng, Bialgebras, Classical Yang-Baxter Equation and Manin Triple for 3-Lie Algebras, arXiv:math-ph/1604.05996.
[15] R. Bai, C. Bai, and J. Wang, J. Math. Phys. 51 (2010) 063505.
[16] R. Bai, L. Guo, J. Li, and Y. Wu, J. Math. Phys. 54 (2013) 064504.
[17] J. Figueroa-O’Farrill, J. Math. Phys. 50 (2009) 113514.
[18] T. Zhang, Deformations and Extensions of 3-Lie Algebras, arXiv:1401.4656.
[19] J. Bagger and N. Lambert, Phys. Rev. D 79 (2009) 025002.
[20] S. Cherkis and C. Sämann, Phys. Rev. D 78 (2008) 066019.
[21] J. Gomis, D. Rodríguez-Gómez, M. Van Raamsdonk, and H. Verlinde, J. High Energy Phys. 8 (2008) 094.
[22] P. Ho, R. Hou, and Y. Matsuo, J. High Energy Phys. 6 (2008) 020.
[23] G. Papadopoulos, J. High Energy Phys. 5 (2008) 054.
[24] M. Van Raamsdonk, J. High Energy Phys. 5 (2008) 105.
[25] J.A. de Azcárraga and J.M. Izquierdo, J. Phys. A 43 (2010) 293001.
[26] M. Gerstenhaber, Ann. Math. 79 (1964) 59.
[27] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, Chichester (1993).
[28] B.A. Kupershmidt, J. Nonlinear Math. Phys. 6 (1999) 448.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
Supported by National Natural Science Foundation of China under Grant Nos. 11471139, 11271202, 11221091, 11425104, Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20120031110022, and National Natural Science Foundation of Jilin Province under Grant No. 20140520054JH
{{custom_fund}}