Folding Model Analysis of Elastic Scattering of 11B from Light, Medium, and Heavy Nuclei

M. Aygun

理论物理通讯 ›› 2016, Vol. 66 ›› Issue (05) : 531-540.

PDF(2165 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(2165 KB)
理论物理通讯 ›› 2016, Vol. 66 ›› Issue (05) : 531-540.

Folding Model Analysis of Elastic Scattering of 11B from Light, Medium, and Heavy Nuclei

  • M. Aygun
作者信息 +

Folding Model Analysis of Elastic Scattering of 11B from Light, Medium, and Heavy Nuclei

  • M. Aygun
Author information +
文章历史 +

摘要

The elastic scattering angular distributions of 11B projectile on light, medium, and heavy target nuclei including 7Li, 9Be, 12C, 16O, 24,25,26Mg, 27Al, 28Si, 40Ca, 58Ni, 59Co, 60Ni, 197Au, 208Pb, and 209Bi have been analyzed at various incident energies. The theoretical results have been obtained by using two different nuclear potentials within the framework of the optical model (OM). Firstly, the double folding potential for real part and the Wood-Saxon (WS) potential for imaginary part have been applied. Secondly, the calculations with double folding potential for both real and imaginary part have been performed and compared with the experimental data. It has been seen that the results are in very good agreement with the experimental data. Also, the volume integrals and cross-sections for each reaction have been obtained. Finally, a new and simple formula for the imaginary potential depth has been derived to clarify the nuclear interactions of 11B nucleus at low energy reactions.

Abstract

The elastic scattering angular distributions of 11B projectile on light, medium, and heavy target nuclei including 7Li, 9Be, 12C, 16O, 24,25,26Mg, 27Al, 28Si, 40Ca, 58Ni, 59Co, 60Ni, 197Au, 208Pb, and 209Bi have been analyzed at various incident energies. The theoretical results have been obtained by using two different nuclear potentials within the framework of the optical model (OM). Firstly, the double folding potential for real part and the Wood-Saxon (WS) potential for imaginary part have been applied. Secondly, the calculations with double folding potential for both real and imaginary part have been performed and compared with the experimental data. It has been seen that the results are in very good agreement with the experimental data. Also, the volume integrals and cross-sections for each reaction have been obtained. Finally, a new and simple formula for the imaginary potential depth has been derived to clarify the nuclear interactions of 11B nucleus at low energy reactions.

关键词

optical model / elastic scattering

Key words

optical model / elastic scattering

引用本文

导出引用
M. Aygun. Folding Model Analysis of Elastic Scattering of 11B from Light, Medium, and Heavy Nuclei[J]. 理论物理通讯, 2016, 66(05): 531-540
M. Aygun. Folding Model Analysis of Elastic Scattering of 11B from Light, Medium, and Heavy Nuclei[J]. Communications in Theoretical Physics, 2016, 66(05): 531-540
中图分类号: 24.10.Ht    24.50.+g   

参考文献

[1] G.R. Satchler, Direct Nuclear Reactions, Oxford University Press, Oxford (1983).

[2] M. Aygun, Ann. Nucl. Energy 51 (2013) 1.

[3] M. Aygun, Y. Kucuk, I. Boztosun, and Awad A. Ibraheem, Nucl. Phys. A 848 (2010) 245.

[4] M. Aygun, Commun. Theor. Phys. 60 (2013) 69.

[5] N. Burtebaev, M.K. Baktybaev, B.A. Duisebaev, R.J. Peterson, and S.B. Sakuta, Phys. At. Nucl. 68 (2005) 1303.

[6] D.L. Pham, Journal de Physique Lettres 37 (1976) 67.

[7] A.T. Rudchik, et al., Nucl. Phys. A 939 (2015) 112.

[8] M. Kokkoris, et al., Nucl. Instrum. Methods Phys. Res. B 268 (2010) 3539.

[9] M. Mayer, A. Annen, W. Jacob, and S. Grigull, Nucl. Instrum. Methods Phys. Res. B 143 (1998) 244.

[10] M. Vollmer, J.D. Meyer, R.W. Michelmann, and K. Bethge, Nucl. Instrum. Methods Phys. Res. B 117 (1996) 21.

[11] http://www.nndc.bnl.gov/nudat2/chartNuc.jsp

[12] L. Yang, et al., Phys. Rev. C 87 (2013) 047601.

[13] Sh. Hamada and N. Burtebayev, Int. J. Mod. Phys. E 24 (2015) 1550047.

[14] T. Yamada and Y. Funaki, Phys. Rev. C 82 (2010) 064315.

[15] R. Vlastou, et al., Eur. Phys. J. A 8 (2000) 361.

[16] R. Tripathi, K. Sudarshan, S. Sodaye, S.K. Sharma, and A.V.R. Reddy, Phys. Rev. C 75 (2007) 024609.

[17] T. Kawabata, et al., Nucl. Phys. A 788 (2007) 301c.

[18] T. Suhara and Y. Kanada-En'yo, Few-Body Syst. 54 (2013) 1377.

[19] V. Hnizdo, J. Szymakowski, K.W. Kemper, and J.D. Fox, Phys. Rev. C 24 (1981) 1495.

[20] C.W. Glover, K.W. Kemper, L.A. Parks, F. Petrovich, and D.P. Stanley, Nucl. Phys. A 337 (1980) 520.

[21] S. Hossain, M.N.A. Abdullah, Md. Zulfiker Rahman, A.K. Basak, and F.B. Malik, Phys. Scr. 87 (2013) 015201.

[22] M. El-Azab Farid and M.A. Hassanain, Nucl. Phys. A 678 (2000) 39.

[23] S.A. Seyyedi and H. Golnarkar, arXiv:1501.04460v1[nucl-th] 19 Jan. (2015).

[24] M.F. Vineyard, J. Cook, K.W. Kemper, and M.N. Stephensens, Phys. Rev. C 30 (1984) 3.

[25] G. Kocak, M. Karakoc, I. Boztosun, and A.B. Balantekin, Phys. Rev. C 81 (2010) 024615.

[26] Shen Qing-biao, Feng Da-chun, and Zhuo Yi-Zhong, Phys. Rev. C 43 (1991) 2773.

[27] H.F. Ehrenberg, R. Hofstadter, U. Meyer-Berkhout, D.G. Ravenhall, and S.E. Sobottka, Phys. Rev. 113 (1959) 666.

[28] G.R. Satchler and W.G. Love, Phys. Rep. 55 (1979) 183.

[29] A.A. Rudchik, et al., Phys. Rev. C 72 (2005) 034608.

[30] A.T. Rudchik, V.M. Kyryanchuk, A. Budzanowski, V.K. Chernievsky, and B. Cz, Nucl. Phys. A 714 (2003) 391.

[31] J.F. Mateja, et al., Phys. Rev. C 31 (1985) 867.

[32] L.A. Parks, D.P. Stanley, L.H. Courtney, and K.W. Kemper, Phys. Rev. C 21 (1980) 217.

[33] C.B. Fulmer, S. Mukhopadhyay, G.R. Satchler, R.L. Auble, J.B. Ball, F.E. Bertrand, E.E. Gross, and D.C. Hensley, Nucl. Phys. A 385 (1982) 83.

[34] L.A. Parks, K.W. Kemper, R.I. Cutler, and L.H. Hardwood, Phys. Rev. C 19 (1979) 2206.

[35] N.N. Deshmukh, et al., Phys. Rev. C 92 (2015) 054615.

[36] P.K. Sahu, et al., Phys. Rev. C 68 (2003) 054612.

[37] A. Shrivastava, et al., Nucl. Phys. A 635 (1998) 411.

[38] I.J. Thompson, Comput. Phys. Rep. 7 (1988) 167.

[39] M. Aygun, Acta Phys. Pol. B 45 (2014) 1875.

PDF(2165 KB)

811

Accesses

0

Citation

Detail

段落导航
相关文章

/