Lie Symmetry Analysis of the Inhomogeneous Toda Lattice Equation via Semi-Discrete Exterior Calculus

刘姜, 王灯山, 尹彦彬

理论物理通讯 ›› 2017, Vol. 67 ›› Issue (06) : 643-647.

PDF(129 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(129 KB)
理论物理通讯 ›› 2017, Vol. 67 ›› Issue (06) : 643-647.

Lie Symmetry Analysis of the Inhomogeneous Toda Lattice Equation via Semi-Discrete Exterior Calculus

  • 刘姜1, 王灯山1,2, 尹彦彬3
作者信息 +

Lie Symmetry Analysis of the Inhomogeneous Toda Lattice Equation via Semi-Discrete Exterior Calculus

  • Jiang Liu1, Deng-Shan Wang1,2, Yan-Bin Yin3
Author information +
文章历史 +

摘要

In this work, the Lie point symmetries of the inhomogeneous Toda lattice equation are obtained by semi-discrete exterior calculus, which is a semi-discrete version of Harrison and Estabrook's geometric approach. A four-dimensional Lie algebra and its one-, two-and three-dimensional subalgebras are given. Two similarity reductions of the inhomogeneous Toda lattice equation are obtained by using the symmetry vectors.

Abstract

In this work, the Lie point symmetries of the inhomogeneous Toda lattice equation are obtained by semi-discrete exterior calculus, which is a semi-discrete version of Harrison and Estabrook's geometric approach. A four-dimensional Lie algebra and its one-, two-and three-dimensional subalgebras are given. Two similarity reductions of the inhomogeneous Toda lattice equation are obtained by using the symmetry vectors.

关键词

Lie point symmetries / semi-discrete exterior calculus / differential-difference equations / similarity reductions

Key words

Lie point symmetries / semi-discrete exterior calculus / differential-difference equations / similarity reductions

引用本文

导出引用
刘姜, 王灯山, 尹彦彬. Lie Symmetry Analysis of the Inhomogeneous Toda Lattice Equation via Semi-Discrete Exterior Calculus[J]. 理论物理通讯, 2017, 67(06): 643-647
Jiang Liu, Deng-Shan Wang, Yan-Bin Yin. Lie Symmetry Analysis of the Inhomogeneous Toda Lattice Equation via Semi-Discrete Exterior Calculus[J]. Communications in Theoretical Physics, 2017, 67(06): 643-647
中图分类号: 02.30.Ik   

参考文献

[1] M. J. Ablowitz, SIAM. Rev. (1977) 663.

[2] V. B. Matveev and M. A. Salle, Darboux Transformation and Solitons, Springer, Berlin (1991).

[3] P. J. Olver, Applications of Lie Groups to Differential Equations, GTM 107, 2nd ed. Springer, New York (1993).

[4] W. X. Ma, Phys. Lett. A (2002) 35.

[5] S. Y. Lou, J. Math. Phys. 41(2000) 6509; X. Y. Tang and S. Y. Lou, Chin. Phys. Lett. 19(2002) 1.

[6] Y. Chen and Z. Z. Dong, Nonlinear Anal. 71(2009) 810.

[7] S. H. Meng, L. Xu, and L. Chen, J. Syst. Sci. Infor. (2016) 258.

[8] L. Wang and S. C. Guo, J. Syst. Sci. Infor. (2016) 560.

[9] X. Lü, Chaos (2013) 033137.

[10] S. F. Tian and H. Q. Zhang, Stud. Appl. Math. (2013) 212.

[11] X. Y. Wen and Z. Yan, Commun. Nonlinear Sci. Numer. Simulat. (2017) 311.

[12] B. Ren, Phys. Scr. (2015) 065206.

[13] M. J. Ablowitz, B. Prinari, and A.D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, Cambridge University Press, Cambridge (2004).

[14] X. Y. Wen, Z. Y. Yan, and B. A. Malomed, Chaos (2016) 013105.

[15] G. F. Yu and Z. W. Xu, Phys. Rev. E (2015) 062902.

[16] G. F. Yu, Stud. Appl. Math. (2015) 117.

[17] H. M. Li, B. Li, and Y. Q. Li, J. Math. Phys. 53(2012) 043506.

[18] D. Levi and P. Wintemitz, Phys. Lett. A (1991) 335.

[19] D. Levi and P. Winternitz, J. Math. Phys. (1993) 3713.

[20] G. R. W. Quispel, H. W. Capel, and R. Sahadevan, Phys. Lett. A (1992) 379.

[21] Z. H. Jiang, Phys. Lett. A (1998) 137.

[22] Z. H. Jiang, J. Math. Anal. Appl. (1998) 396.

[23] W. Ding and X. Y. Tang, Commun. Theor. Phys. (2004) 645.

[24] S. F. Shen, Z.L. Pan, and J. Zhang, Commun. Theor. Phys. (2004) 805.

[25] B. K. Harrison and F. B. Estabrook, J. Math. Phys. (1971) 653.

[26] B. K. Harrison, SIGMA (2005) 001.

[27] D. S. Wang and Y. B. Yin, Comput. Math. Appl. (2016) 748.

[28] H. J. Li, D. S. Wang, S. K. Wang, K. Wu, and W. Z. Zhao, Phys. Lett. A (2008) 5878.

[29] A. Connes, Noncommutative Geometry, Academic Press, New York (1994)

[30] H. Y. Guo, K. Wu, and W. Zhang, Commun. Theor. Phys. (2000) 245.

[31] K. Wu, W. Z. Zhao, and H. Y. Guo, Sci. China Ser. A:Math. (2006) 1458.

[32] N. Lv, J. Q. Mei, and H. Q. Zhang, Int. J. Geom. Meth. Mod. Phys. (2012) 1220014.

[33] Q. Ding and S. F. Tian, Rep. Math. Phys. (2014) 323.

[34] X. Y. Jia and N. Wang, Chin. Phys. Lett. (2009) 1.

[35] D. Levi and O. Ragnisco, J. Phys. A (1991) 1729.

[36] Y. Q. Bai, K. Wu, H. Y. Guo, and W. Z. Zhao, Commun. Theor. Phys. (2007) 591.

[37] J. Patera and P. Winternitz, J. Math. Phys. (1977) 1449.

[38] L. V. Ovsiannikov, Group Analysis of Differential Equations, Nauka, Moscow (1978); English Translation by W. F. Ames, ed., Published by Academic Press, New York (1982).

基金

Supported by National Natural Science Foundation of China under Grant Nos. 11375030, 11472315, and Department of Science and Technology of Henan Province under Grant No. 162300410223 and Beijing Finance Funds of Natural Science Program for Excellent Talents under Grant No. 2014000026833ZK19


PDF(129 KB)

733

Accesses

0

Citation

Detail

段落导航
相关文章

/