The peristaltic flow of nanofluids is a relatively new area of research.Scientists are of the opinion that the no-slip conditions at the boundaries are no longer valid and consequently,the first and the second order slip conditions should be addressed.In this paper,the effects of slip conditions and the convective boundary conditions at the boundary walls on the peristaltic flow of a viscous nanofluid are investigated for.Also,the exact analytical solutions are obtained for the model.The obtained results are presented through graphs and discussed.The results reveal that the two slip parameters have strong effects on the temperature and the nanoparticles volume fraction profiles.Moreover,it has been seen that the temperature and nanoparticles volume fraction profiles attain certain values when the first slip condition exceeds a specified value.However,no limit value for the second slip parameter has been detected.Further,the effects of the various emerging parameters on the flow and heat transfer characteristics have been presented.
Abstract
The peristaltic flow of nanofluids is a relatively new area of research.Scientists are of the opinion that the no-slip conditions at the boundaries are no longer valid and consequently,the first and the second order slip conditions should be addressed.In this paper,the effects of slip conditions and the convective boundary conditions at the boundary walls on the peristaltic flow of a viscous nanofluid are investigated for.Also,the exact analytical solutions are obtained for the model.The obtained results are presented through graphs and discussed.The results reveal that the two slip parameters have strong effects on the temperature and the nanoparticles volume fraction profiles.Moreover,it has been seen that the temperature and nanoparticles volume fraction profiles attain certain values when the first slip condition exceeds a specified value.However,no limit value for the second slip parameter has been detected.Further,the effects of the various emerging parameters on the flow and heat transfer characteristics have been presented.
关键词
nanofluid /
peristaltic flow /
slip model /
convective conditions /
asymmetric channel
{{custom_keyword}} /
Key words
nanofluid /
peristaltic flow /
slip model /
convective conditions /
asymmetric channel
{{custom_keyword}} /
中图分类号:
47.61.-k
82.60.Qr
65.80.-n
47.20.Gv
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] T. W. Latham, Fluid Motion in a Peristaltic Pump, M.Sc. Thesis, MIT, Cambridge, MA (1966).
[2] O. Eytan, A. J. Jaffa, and D. Elad, Med. Eng. Phys. 23(2001) 473.
[3] K. Vajravelu, S. Sreenadh, and V. R. Babu, Int. J. Non-Linear Mech. 40(2005) 83.
[4] A. Ebaid, Phys. Lett. A 372(2008) 4493.
[5] A. Ebaid, Zeitschrift fr Naturforschung A 66(2011) 423.
[6] M. Kothandapani and J. Prakash, J. Magn. Magn. Mater. 378(2015) 152.
[7] P. Goswami, J. Chakraborty, A. Bandopadhyay, and S. Chakraborty, Microvasc Res. 103(2016) 41.
[8] S. U. S. Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles, The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD 66(1995) 99.
[9] S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, Appl. Phys. Lett. 79(2001) 2252.
[10] J. Buongiorno and W. Hu, Nanofluid Coolants for Advanced Nuclear Power Plants, Paper No. 5705, in:Proceedings of ICAPP'05, Seoul, South Korea, May 15-19, (2005).
[11] S. K. Das, S. U. S. Choi, W. Yu, and T. Pradeep, Nanofluids:Science and Technology, Wiley Interscience, New Jersey (2007).
[12] J. Buongiorno, ASME J. Heat Transf. 128(2006) 240.
[13] D. A. Nield and A. Kuznetsov, Int. J. Heat Mass Transf. 52(2009) 5792.
[14] K. Khanafer, K. Vafai, and M. Lightstone, Int. J. Heat Mass Transf. 46(2003) 3639.
[15] W. Daungthongsuk and S. Wongwises, Renew. Sust. Energy Rev. 11(2007) 797.
[16] R. K. Tiwari and M. K. Das, Int. J. Heat Mass Transf. 50(2007) 2002.
[17] L. Wang and X. Wei, Chaos, Solitons & Fractals 39(2009) 2211.
[18] H. F. Oztop and E. Abu-Nada, Int. J. Heat Fluid Flow 29(2008) 1326.
[19] A. V. Kuznetsov and D. A. Nield, Int. J. Thermal Sci. 49(2010) 243.
[20] A. V. Kuznetsov and D. A. Nield, Trans. Porous Media 83(2010) 425.
[21] N. S. Akbar and S. Nadeem, Commun. Theor. Phys. 56(2011) 761.
[22] N. S. Akbar, S. Nadeem, T. Hayat, and A. A. Hendi, Meccanica 47(2012) 1283.
[23] A. Ebaid and E. H. Aly, Comput. Math. Method. Med. 2013(2013) Article ID 825376, 8 pages.
[24] E. H. Aly and A. Ebaid, J. Mech. 30(2014) 411.
[25] M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, Nature (London) 438(2005) 44.
[26] E. H. Aly and A. Ebaid, Abst. Mathematical and Computational Analysis of Flow and Transport Phenomena, Vol. 2013(2013), Article ID 721578, 12 pages.
[27] E. H. Aly and A. Ebaid, Abst. Appl. Anal., in the special issue:Analytical and Numerical Approaches for Complicated Nonlinear Equations, Vol. 2014(2014), Article ID 191876, 11 pages.
[28] E. H. Aly and K. Vajravelu, Appl. Math. Comput. 232(2014) 191.
[29] T. Hayat, Humaira Yasmin, B. Ahmad, and B. Chen, J. Mol. Liq. 193(2014) 74.
[30] R. Ellahi, M. M. Bhatti, C. Fetecau, and K. Vafai, Commun. Theor. Phys. 65(2016) 66.
[31] M. M. Bhatti, A. Zeeshan, and R. Ellahi, Comput. Meth. Programs Biomed. 137(2016) 115.
[32] M. M. Bhatti, R. Ellahi, and A. Zeeshan, J. Mol. Liq. 222(2016) 101.
[33] M. M. Bhatti, A. Zeeshan, and R. Ellahi, Microvasc. Res. 110(2017) 32.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}