Centrality Dependence of K*(892)0 and φ(1020) Production at LHC

Inam-ul Bashir, Saeed Uddin

理论物理通讯 ›› 2017, Vol. 68 ›› Issue (04) : 500-504.

PDF(412 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(412 KB)
理论物理通讯 ›› 2017, Vol. 68 ›› Issue (04) : 500-504.

Centrality Dependence of K*(892)0 and φ(1020) Production at LHC

  • Inam-ul Bashir, Saeed Uddin
作者信息 +

Centrality Dependence of K*(892)0 and φ(1020) Production at LHC

  • Inam-ul Bashir, Saeed Uddin
Author information +
文章历史 +

摘要

We study the centrality dependence of the mid-rapidity (|y|< 0.5) yields and transverse momentum distributions of K*(892)0 and φ(1020) resonances produced in Pb + Pb collisions at √sNN=2.76 TeV. The midrapidity density (dN/dy) and the shape of the transverse momentum spectra are well reproduced by an earlier proposed Unified Statistical Thermal Freeze-out Model (USTFM), which incorporates the effects of both longitudinal as well as transverse hydrodynamic flow. The freeze-out properties in terms of kinetic freeze-out temperature and transverse flow velocity parameter are extracted from the model fits to the transverse momentum data provided by the ALICE experiment at the LHC. The kinetic freeze-out temperature is found to increase with decreasing event centrality while the transverse flow velocity parameter shows a mild decrease on moving towards peripheral collisions. Moreover the centrality dependence of the mid-rapidity system size at freeze-out has also been studied in terms of transverse radius parameter.

Abstract

We study the centrality dependence of the mid-rapidity (|y|< 0.5) yields and transverse momentum distributions of K*(892)0 and φ(1020) resonances produced in Pb + Pb collisions at √sNN=2.76 TeV. The midrapidity density (dN/dy) and the shape of the transverse momentum spectra are well reproduced by an earlier proposed Unified Statistical Thermal Freeze-out Model (USTFM), which incorporates the effects of both longitudinal as well as transverse hydrodynamic flow. The freeze-out properties in terms of kinetic freeze-out temperature and transverse flow velocity parameter are extracted from the model fits to the transverse momentum data provided by the ALICE experiment at the LHC. The kinetic freeze-out temperature is found to increase with decreasing event centrality while the transverse flow velocity parameter shows a mild decrease on moving towards peripheral collisions. Moreover the centrality dependence of the mid-rapidity system size at freeze-out has also been studied in terms of transverse radius parameter.

关键词

statistical model / kinetic freeze-out / chemical freeze-out / collective flow

Key words

statistical model / kinetic freeze-out / chemical freeze-out / collective flow

引用本文

导出引用
Inam-ul Bashir, Saeed Uddin. Centrality Dependence of K*(892)0 and φ(1020) Production at LHC[J]. 理论物理通讯, 2017, 68(04): 500-504
Inam-ul Bashir, Saeed Uddin. Centrality Dependence of K*(892)0 and φ(1020) Production at LHC[J]. Communications in Theoretical Physics, 2017, 68(04): 500-504
中图分类号: 25.75.-q    25.75.Ag    25.75.Dw    25.75.Ld   

参考文献

[1] U. W. Heinz, Nucl. Phys. A 661(1999) 240.

[2] F. Becattini, Z. Phys. C 69(1996) 485; F. Becattini and U. Heinz, ibid. 76(1997) 269; F. Becattini and G. Passaleva, Eur. Phys. J. C 23(2002) 551; F. Becattini, Nucl. Phys. A 702(2002) 336.

[3] M. van Leeuwen, et al., (NA49 Collaboration), Nucl. Phys. A 715(2003) 161c.

[4] F. Becattini, J. Manninen, and M. Gazdzicki, Phys. Rev. C 73(2006) 044905.

[5] I. Kraus, J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton, Phys. Rev. C 76(2007) 064903.

[6] F. Cooper and G. Frye, Phys. Rev. D 10(1974) 186.

[7] S. Uddin, et al., J. Phys. G 39(2012) 015012.

[8] R. A. Bhat, S. Uddin, and Inam-ul Bashir, Nuclear Physics A 935(2015) 4351.

[9] Saeed Uddin, et al., Nucl. Phys. A 934(2015) 121132.

[10] S. Uddin, Inam-ul Bashir, and R. A. Bhat, Adv. High Energy Phys. 2015(2015), Article ID 154853, 7 pages.

[11] W. Broniowski and W. Florkowski, Phys. Rev. Lett. 87(2001) 272302; W. Broniowski and W. Florkowski, Phys. Rev. C 65(2002) 064905.

[12] D. Teaney, J. Lauret, and E. V. Shuryak, Phys. Rev. Lett. 86(2001) 4783.

[13] K. Adcox, et al., (PHENIX Collaboration), Phys. Rev. Lett. 88(2002) 242301; C. Adler, et al., (STAR Collaboration), Phys. Rev. Lett. 87(2001) 262302; K. Adcox, et al., (PHENIX Collaboration), Phys. Rev. C 69(2004) 024904.

[14] F. Becattini, et al., Phys. Rev. C 64(2001) 024901; P. Braun-Munzinger, D. Magestro, K. Redlich, and J. Stachel, Phys. Lett. B 518(2001).

[15] Inam-ul Bashir, et al., International Journal of Modern Physics A 30(2015) 1550139.

[16] K. Haglin, Nucl. Phys. A 584(1995) 717; W. Smith and K. L. Haglin, Phys. Rev. C 57(1998) 1449; A. Shor, Phys. Rev. Lett. 54(1985) 1122; K. Haglin, Nucl. Phys. A 584(1995) 719; W. Smith and K. L. Haglin, Phys. Rev. C 57(1998) 1449.

[17] L. Alvarez-Ruso and V. Koch, Phys. Rev. C 65(2002) 054901.

[18] T. Ishikawa, et al., Phys. Lett. B 608(2005) 215.

[19] Particle Data Group Collaboration, K. A. Olive, et al., Chin. Phys. C 38(2014) 090001.

[20] J. Adam, et al., (ALICE Collaboration) Eur. Phys. J. C 76(2016) 245.

[21] A. Andronic, P. Braun-Munzinger, and J. Stachel, Nucl. Phys. A 772(2006) 167.

[22] B. I. Abelev, et al., (ALICE Collaboration), Phys. Rev. C 91(2015) 024609.

[23] J. Adams, et al., (STAR Collaboration), Nucl. Phys. A 757(2005) 102.

[24] S. S. Adler, et al., (PHENIX Collaboration), Phys. Rev. C 72(2005) 014903.

[25] B. Abelev, et al., (ALICE Collaboration), Phys. Rev. C 88(2013) 044910.

[26] Saeed Uddin, et al., Modern Phys. Lett. A 30(2015) 1550167.

基金

Supported by Council of Scientific and Industrial Research, New Delhi for This Work


PDF(412 KB)

553

Accesses

0

Citation

Detail

段落导航
相关文章

/