Effects of Anisotropy on Scalar Field Ghost Dark Energy and the Non-Equilibrium Thermodynamics in Fractal Cosmology

A. Najafi, H. Hossienkhani

理论物理通讯 ›› 2017, Vol. 68 ›› Issue (04) : 553-564.

PDF(1603 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(1603 KB)
理论物理通讯 ›› 2017, Vol. 68 ›› Issue (04) : 553-564.

Effects of Anisotropy on Scalar Field Ghost Dark Energy and the Non-Equilibrium Thermodynamics in Fractal Cosmology

  • A. Najafi1, H. Hossienkhani2
作者信息 +

Effects of Anisotropy on Scalar Field Ghost Dark Energy and the Non-Equilibrium Thermodynamics in Fractal Cosmology

  • A. Najafi1, H. Hossienkhani2
Author information +
文章历史 +

摘要

Since the fractal cosmology has been created in early universe, therefore their models were mostly isotropic. The majority of previous studies had been based on FRW universe, while in the early universe, the best model for describing fractal cosmology is actually the anisotropic universe. Therefore in this work, by assuming the anisotropic universe, the cosmological implications of ghost and generalized ghost dark energy models with dark matter in fractal cosmology has been discussed. Moreover, the different kinds of dark energy models such as quintessence and tachyon field, with the generalized ghost dark energy in fractal universe has been investigated. In addition, we have reconstructed the Hubble parameter, H, the energy density, ρ, the deceleration parameter, q, the equations of state parameter, ωD, for both ghost and generalized ghost dark energy models. This correspondence allows us to reconstruct the potential and the dynamics of a fractal canonical scalar field according to the evolution of generalized ghost dark energy density. Eventually, thermodynamics of the cosmological apparent horizon in fractal cosmology was investigated and the validity of the Generalized second law of thermodynamics (GSLT) have been examined in an anisotropic universe. The results show the influence of the anisotropy on the GSLT of thermodynamics in a fractal cosmology.

Abstract

Since the fractal cosmology has been created in early universe, therefore their models were mostly isotropic. The majority of previous studies had been based on FRW universe, while in the early universe, the best model for describing fractal cosmology is actually the anisotropic universe. Therefore in this work, by assuming the anisotropic universe, the cosmological implications of ghost and generalized ghost dark energy models with dark matter in fractal cosmology has been discussed. Moreover, the different kinds of dark energy models such as quintessence and tachyon field, with the generalized ghost dark energy in fractal universe has been investigated. In addition, we have reconstructed the Hubble parameter, H, the energy density, ρ, the deceleration parameter, q, the equations of state parameter, ωD, for both ghost and generalized ghost dark energy models. This correspondence allows us to reconstruct the potential and the dynamics of a fractal canonical scalar field according to the evolution of generalized ghost dark energy density. Eventually, thermodynamics of the cosmological apparent horizon in fractal cosmology was investigated and the validity of the Generalized second law of thermodynamics (GSLT) have been examined in an anisotropic universe. The results show the influence of the anisotropy on the GSLT of thermodynamics in a fractal cosmology.

关键词

anisotropic universe / fractal cosmology / ghost DE / generalized ghost DE / non-equilibrium thermodynamics / generalized second law

Key words

anisotropic universe / fractal cosmology / ghost DE / generalized ghost DE / non-equilibrium thermodynamics / generalized second law

引用本文

导出引用
A. Najafi, H. Hossienkhani. Effects of Anisotropy on Scalar Field Ghost Dark Energy and the Non-Equilibrium Thermodynamics in Fractal Cosmology[J]. 理论物理通讯, 2017, 68(04): 553-564
A. Najafi, H. Hossienkhani. Effects of Anisotropy on Scalar Field Ghost Dark Energy and the Non-Equilibrium Thermodynamics in Fractal Cosmology[J]. Communications in Theoretical Physics, 2017, 68(04): 553-564
中图分类号: 95.30.Sf    95.35.+d    95.36.+x   

参考文献

[1] A. G. Reiss, A. V. Filippenko, P. Challis, et al., Astron. J. 116(1998) 1009.

[2] L. Amendola, S. Tsujikawa, Dark Energy Theory and Observation, Cambridge University Press, Cambridge (2010).

[3] J. Edmund, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15(2006) 1753.

[4] S. Tsujikawa, Astrophys. Space Sci. 370(2011) 331.

[5] B. Ratra and P. Peebles, Phys. Rev. D 37(1988) 3409.

[6] C. A. Picon, V. F. Mukhanov, and P. J. Steinhardt, Phys. Rev. Lett. 85(2000) 4438.

[7] F. R. Urban and A. R. Zhitnitsky, Phys. Lett. B 688(2010) 9.

[8] N. Ohta, Phys. Lett. B 695(2011) 41.

[9] E. Witten, Nucl. Phys. B 156(1979) 269.

[10] G. Veneziano, Nucl. Phys. B 159(1979) 213.

[11] P. Nath and R. L. Arnowitt, Phys. Rev. D 23(1981) 473.

[12] K. Kawarabayashi and N. Ohta, Nucl. Phys. B 175(1980) 477.

[13] F. Piazza and S. Tsujikawa, J. Cosmol. Astropart Phys. 0407(2004) 004.

[14] A. R. Zhitnitsky, Phys. Rev. D 86(2012) 045026.

[15] M. Maggiore, Phys. Rev. D 83(2011) 063514.

[16] R. G. Cai, Z. L. Tuo, Y. B. Wu, and Y. Y. Zhao, Phys. Rev. D 86(2012) 023511.

[17] A. Sheykhi, E. Ebrahimi, and Y. Yosefi, Can. J. Phys. 91(2013) 662.

[18] X. Zhang, Phys. Lett. B 648(2007) 1; A. Sheykhi, Phys. Lett. B 682(2010) 329; K. Karami and J. Fehri, Phys. Lett. B 684(2010) 61.

[19] T. Jacobson, Phys. Rev. Lett. 75(1995) 1260.

[20] C. Eling, R. Guedens, and T. Jacobson, Phys. Rev. Lett. 96(2006) 121301.

[21] M. Akbar and R. G. Cai, Phys. Lett. B 635(2006) 7.

[22] T. Padmanabhan, Class. Quantum Grav. 19(2002) 5387.

[23] M. Akbar and R. G. Cai, Phys. Rev. D 75(2007) 084003.

[24] R. G. Cai and L. M. Cao, Phys. Rev. D 75(2007) 064008.

[25] R. G. Cai and S. P. Kim, J. High Energy Phys. 0502(2005) 050.

[26] A. V. Frolov and L. Kofman, J. Cosmol. Astropart Phys. 0305(2003) 009.

[27] B. Wang, E. Abdalla, and R. K. Su, Phys. Lett. B 503(2001) 394.

[28] H. Moradpour, Int. J. Theor. Phys. 55(2016) 4176.

[29] H. Ebadi and H. Moradpour, Int. J. Theor. Phys. 55(2015) 1612.

[30] N. Mazumder and S. Chakraborty, Class. Quantum Grav. 26(2009) 195016.

[31] N. Mazumder and S. Chakraborty, Gen. Relt. Grav. 42(2010) 813.

[32] N. Mazumder and S. Chakraborty, Eur. Phys. J. C 70(2010) 329.

[33] G. Calcagni, Phys. Rev. Lett. 104(2010) 251301.

[34] G. Calcagni, J. High Energy Phys. 03(2010) 120.

[35] A. D. Linde, Phys. Lett. B 175(1986) 395.

[36] J. J. Dickau, Chaos, Solitons and Fractals 41(2009) 2103.

[37] S. Haldar and S. Chakraborty, arXiv:1508.05090[gr-qc].

[38] A. Sheykhi, Z. Teimoori, and B. Wang, Phys. Lett. B 1204(2013) 718.

[39] O. A. Lemets and D. A. Yerokhin arXiv:1202.3457v3; K. Karami, M. Jamil, S. Ghaffari, and K. Fahimi, Can. J. Phys. 91(2013) 770.

[40] M. Salti, M. Korunur, and I. Acikgoz, Eur. Phys. J. Plus. 129(2014) 95; M. Salti and O. Aydogdu, Math. Comput. Appl. 21(2016) 21; S. Chattopadhyay, A. Pasqua, and S. Roy, ISRN High Energy Phys. 2013(2013) 6.

[41] H. K. Eriksen, et al., Astrophys. J. 605(2004) 1420.

[42] T. R. Jaffe, et al., Astrophys. J. 643(2006) 616.

[43] A. Pradhan, H. Amirhashchi, and R. Jaiswal, Astrophys. Space Sci. 334(2011) 249.

[44] A. K. Yadav, Astrophys. Space Sci. 335(2011) 565.

[45] T. Singh and A. K. Agrawal, Astrophys. Space Sci. 182(1991) 289.

[46] M. F. Shamir, Int. J. Theor. Phys. 50(2011) 637.

[47] D. R. K. Reddy, et al., Int. J. Theor. Phys. 51(2012) 3222.

[48] D. R. K. Reddy, et al., Int. J. Theor. Phys. 52(2013) 1214.

[49] H. Hossienkhani, Astrophys. Space. Sci. 361(2016) 136; V. Fayaz, H. Hossienkhani, A. Pasqua, Z. Zarei, and M. Ganji, Can. J. Phys. 94(2016) 1; V. Fayaz, M. R. Setare, and H. Hossienkhani, Can. J. Phys. 91(2013) 153.

[50] T. M. Davis, E. Mortsell, J. Sollerman, et al., Astrophys. J. 666(2007) 716.

[51] A. Shafieloo, V. Sahni, and A. A. Starobinsky, Phys. Rev. D 80(2009) 101301.

[52] P. K. Aluri, S. Panda, M. Sharma, and S. Thakur, J. Cosmol. Astropart Phys. 12(2013) 003.

[53] H. A. Borges and S. Carneiro, Gen. Rel. Grav. 37(2005) 1385.

[54] E. Komatsu, et al., Astrophys. J. Suppl. 180(2009) 330.

[55] P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, et al., Astronomy & Astrophysics 571(2014) A16.

[56] P. J. E. Peebles and B. Ratra, Astrophys. J. 325(1988) L17; R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80(1998) 1582.

[57] R. R. Caldwell and E. V. Linder, Phys. Rev. Lett. 95(2005) 141301.

[58] E. A. Bergshoeff, et al., J. High Energy Phys. 05(2000) 009.

[59] T. Padmanabhan, Phys. Rev. D 66(2002) 021301.

[60] S. Tsujikawa and M. Sami, Phys. Lett. B 603(2004) 113.

[61] J. Zhou, B. Wang, Y. Gong, and E. Abdalla, Phys. Lett. B 652(2007) 86; B. Wang, Y. Gong, and E. Abdalla, Phys. Rev. D 74(2006) 083520.

[62] J. M. Bardeen, B. Carter, and S. W. Hawking, Commun. Math. Phys. 31(1973) 161; J. D. Bekenstein, Phys. Rev. D 7(1973) 2333.

[63] G. Izquierdo and D. Pavón, Phys. Lett. B 633(2006) 420.

[64] Y. S. Myung, Phys. Lett. B 671(2009) 216.

[65] P. F. Gonzalez-Diaz and C. L. Siguenza, Nucl. Phys. B 697(2004) 363.

[66] J. A. S. Lima and S. H. Pereira, Phys. Rev. D 78(2008) 083504.

[67] S. H. Pereira and J. A. S. Lima, Phys. Lett. B 669(2008) 266.

[68] E. N. Saridakis, P. F. Gonzalez-Diaz, and C. L. Siguenza, Class. Quantum Grav. 26(2009) 165003.

PDF(1603 KB)

539

Accesses

0

Citation

Detail

段落导航
相关文章

/