Structural and Mechanical Properties of TiN-TiC-TiO System:First Principle Study

Ali Reza Farhadizadeh, Ahmad Ali Amadeh, Hamidreza Ghomi

理论物理通讯 ›› 2017, Vol. 68 ›› Issue (05) : 678-686.

PDF(3168 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(3168 KB)
理论物理通讯 ›› 2017, Vol. 68 ›› Issue (05) : 678-686.

Structural and Mechanical Properties of TiN-TiC-TiO System:First Principle Study

  • Ali Reza Farhadizadeh1, Ahmad Ali Amadeh1, Hamidreza Ghomi2
作者信息 +

Structural and Mechanical Properties of TiN-TiC-TiO System:First Principle Study

  • Ali Reza Farhadizadeh1, Ahmad Ali Amadeh1, Hamidreza Ghomi2
Author information +
文章历史 +

摘要

Mechanical and structural properties of ternary system of TiN-TiO-TiC are investigated using first principle methods. 70 different compositions of Ti100(NOC)100 with cubic structure are examined in order to illustrate the trend of properties variations. The geometry of compounds is optimized, and then, their chemical stability is assessed. Afterward, shear, bulk and young moduli, Cauchy pressure, Zener ratio, hardness and H3/E2 ratio are computed based on elastic constants. Graphical ternary diagram is used to represent the trend of such properties when the content of nitrogen, oxygen and carbon varies. The results show that incorporation of oxygen into the system decreases the hardness and H3/E2 ratio while subsequently ductility increases due to positive Cauchy pressure. It is revealed that the maximum H3/E2 ratio occurs when both nitrogen and carbon with a little amount of oxygen are incorporated. Ti100N30C70 owns the highest hardness and H3/E2 ratio equal to 39.5 and 0.2 GPa, respectively. In addition, the G/B of this compound, which is about 0.9, shows it is brittle. It is also observed that the solid solutions have better mechanical properties with respect to titanium nitride and titanium carbide. The obtained results could be used to enhance monolayer coatings as well as to design multilayers with specific mechanical properties.

Abstract

Mechanical and structural properties of ternary system of TiN-TiO-TiC are investigated using first principle methods. 70 different compositions of Ti100(NOC)100 with cubic structure are examined in order to illustrate the trend of properties variations. The geometry of compounds is optimized, and then, their chemical stability is assessed. Afterward, shear, bulk and young moduli, Cauchy pressure, Zener ratio, hardness and H3/E2 ratio are computed based on elastic constants. Graphical ternary diagram is used to represent the trend of such properties when the content of nitrogen, oxygen and carbon varies. The results show that incorporation of oxygen into the system decreases the hardness and H3/E2 ratio while subsequently ductility increases due to positive Cauchy pressure. It is revealed that the maximum H3/E2 ratio occurs when both nitrogen and carbon with a little amount of oxygen are incorporated. Ti100N30C70 owns the highest hardness and H3/E2 ratio equal to 39.5 and 0.2 GPa, respectively. In addition, the G/B of this compound, which is about 0.9, shows it is brittle. It is also observed that the solid solutions have better mechanical properties with respect to titanium nitride and titanium carbide. The obtained results could be used to enhance monolayer coatings as well as to design multilayers with specific mechanical properties.

关键词

mechanical properties / structural properties / first principles calculation / elastic constant

Key words

mechanical properties / structural properties / first principles calculation / elastic constant

引用本文

导出引用
Ali Reza Farhadizadeh, Ahmad Ali Amadeh, Hamidreza Ghomi. Structural and Mechanical Properties of TiN-TiC-TiO System:First Principle Study[J]. 理论物理通讯, 2017, 68(05): 678-686
Ali Reza Farhadizadeh, Ahmad Ali Amadeh, Hamidreza Ghomi. Structural and Mechanical Properties of TiN-TiC-TiO System:First Principle Study[J]. Communications in Theoretical Physics, 2017, 68(05): 678-686
中图分类号: 62.20.Dc    62.20.-x    17.15.Mb   

参考文献

[1] H. E. Rebenne and D. G. Bhat, Surf. Coat. Technol. 63 (1994) 1.

[2] I. Safi, Surf. Coat. Technol. 127 (2000) 203.

[3] F. Sanchette, C. Ducros, T. Schmitt, P. Steyer, and A. Billard, Surf. Coat. Technol. 205 (2011) 5444.

[4] M. W. Reedy, T. J. Eden, J. K. Potter, and D. E. Wolfe, Surf. Coat. Technol. 206 (2011) 464.

[5] S. Muboyadzhyan, Russ. Metall. (Metally) 2009 (2009) 183.

[6] S. PalDey, S. Deevi, Mater. Sci. Eng. A 342 (2003) 58.

[7] H. N. Shah and R. Jayaganthan, J. Mater. Eng. Perfor. 21 (2012) 2002.

[8] J. Deng, F. Wu, Y. Lian, Y. Xing, and S. Li, Inter. J. Refrac. Metals Hard Mater. 35 (2012) 10.

[9] E. Bousser, L. Martinu, and J. E. Elemberg-Sapieha, Surf. Coat. Technol. 257 (2014) 165.

[10] Q. Yang, L. Zhao, F. Cai, S. Yang, and D. Teer, Surf. Coat. Technol. 202 (2008) 3886.

[11] Y. X. Xu, L. Chen, F. Pei, and Y. Du, Surf. Coat. Technol. 304 (2016) 512.

[12] E. Alat, A. T. Motta, R. J. Comstock, J. M. Partezana, and D. E. Wolfe, J. Nucl. Mater. 478 (2016) 236.

[13] J. K. Lee and G. S. Yang, Trans. Nonferrous Met. Soc. China 19 (2009) 795.

[14] V. William Grips, H. C. Barshilia, V. E. Selvi, and K. Rajam, Thin Solid Films 514 (2006) 204.

[15] J. E. Sundgren, Thin Solid Films 128 (1985) 21.

[16] H. Wang, H. Zeng, Q. Li, and J. Shen, Thin Solid Films 607 (2016) 59.

[17] D. Yin, Y. Yang, X. Peng, Y. Qin, and Z. Wang, Physica E:Low Dimens. Syst. Nanostruct. 63 (2014) 125.

[18] D. Yin, X. Peng, Y. Qin, and Z. Wang, Physica E:Low Dimens. Syst. Nanostruct. 44 (2012) 1838.

[19] V. Krasnenko and M. G. Brik, Solid State Sci. 28 (2014) 1.

[20] C. Subramanian and K. Strafford, Wear 165 (1993) 85.

[21] O. Se-Doo, K. Jong-Woo, and L. Young-Ze, Tribol. Trans. 47 (2004) 29.

[22] I. Petrov, L. Hultman, U. Helmersson, J. E. Sundgren, and J. Greene, Thin Solid Films 169 (1989) 299.

[23] H. T. Chen and M. F. Yan, Physica B:Condens. Matter 407 (2012) 1183.

[24] Y. Yang, H. Lu, C. Yu, and J. M. Chen, J. Alloys Comp. 485 (2009) 542.

[25] V. P. Zhukov, V. A. Gubanov, O. Jepsen, N. E. Christensen, and O. K. Andersen, Philos. Mag. B 58 (1998) 139.

[26] V. Richter, A. Beger, J. Drobniewski, I. Endler, and E. Wolf, Mater. Sci. Eng. A 209 (1996) 353.

[27] L. Karlsson, L. Hultman, M. Johansson, J. E. Sundgren, and H. Ljungcrantz, Surf. Coat. Technol. 126 (2000) 1.

[28] S. H. Jhi and J. Ihm, Phys. Rev. B 56 (1997) 13826.

[29] H. Chen and M. Yan, Physica B:Cond. Matter 407 (2012) 1183.

[30] A. C. Fernandes, P. Carvalho, F. Vaz, et al., Thin Solid Films 515 (2006) 866.

[31] A. C. Fernandes, F. Vaz, L. Rebouta, et al., Surf. Coat. Technol. 201 (2007) 5587.

[32] S. K. Rawal, A. K. Chawla, R. Jayaganthan, and R. Chandra, J. Mater. Sci. Technol. 28 (2012) 512.

[33] B. Jiang, N. Ying, Q. Wang, et al., J. Am. Ceram. Soc. 97 (2014) 1288.

[34] D. Chen, J. Chen, Y. Zhao, B. Yu, C. Wang, and D. Shi, Acta Metall. Sin. (Engl.) 22 (2009) 146.

[35] J. H. Jang, C. H. Lee, Y. U. Heo, and D. W. Suh, Acta Mater. 60 (2012) 208.

[36] L. Marques, S. Carvalho, F. Vaz, et al., Vacuum 83 (2009) 1240.

[37] Z. Y. Zhai, J. Peng, F. Zao, et al., Physica B:Conden. Matter 405 (2010) 4620.

[38] S. J. Clark, M. D. Segall, C. J. Pickard, et al., Z. Kristallog. Materials 220 (2005) 567.

[39] D. M. Ceperley and B. Alder, Phys. Rev. Lett. 45 (1980) 566.

[40] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.

[41] B. Hammer, L. B. Hansen, and J. K. Nrskov, Phys. Rev. B 59 (1999) 7413.

[42] J. P. Perdew, J. Chevary, S. Vosko, et al., Phys. Rev. B 46 (1992) 6671.

[43] Z. Wu and R. E. Cohen, Phys. Rev. B 73 (2006) 235116.

[44] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, et al., Phys. Rev. Lett. 100 (2008) 136406.

[45] B. G. Pfrommer, M. Ct, S. G. Louie, and M. L. Cohen, J. Comput. Phys. 131 (1997) 233.

[46] W. Wong-Ng, H. McMurdie, B. Paretzkin, C. Hubbard, and A. Dragoo, Powder Diffraction 2 (1987) 200.

[47] National Bureau of Standards 25 (1981) 73.

[48] R. M Wood, Proc. Phys. Soc. 80 (1962) 783.

[49] W. Yang, M. Pang, Y. Tan, and Y. Zhan, J. Phys. Chem. Solids 98 (2016) 298.

[50] Z. Zhou, X. Zhou, and K. Zhang, Computational Materials Science 113 (2016) 98.

[51] G. Abadias, V. I. Ivashchenko, L. Belliard, and P. Djemia, Acta Materialia 60 (2012) 5601.

[52] A. T. Asvini Meenaatci, R. Rajeswarapalanichamy, and K. Iyakutti, Solid State Sciences 19 (2013) 36.

[53] R. Rajeswarapalanichamy, M. Kavitha, G. Sudha Priyanga, and K. Iyakutti, J. Phys. Chem. Solids 78 (2015) 118.

[54] L. Vegard, Zeitschrift für Physik 5 (1921) 17.

[55] Z. Li and R. C. Bradt, J. Mater. Sci. 22 (1987) 2557.

[56] S. Hong and C. Fu, Intermetallics 7 (1999) 5.

[57] R. Hill, Proc. Phys. Soc. Sec. A 65 (1952) 349.

[58] P. Ravindran, L. Fast, P. A. Korzhavyi, et al., J. Appl. Phys. 84 (1998) 4891.

[59] D. Pettifor, Mater. Sci. Technol. 8 (1992) 345.

[60] P. Ou, J. Wang, S. Shang, et al., Surf. Coat. Technol. 264 (2015) 41.

[61] Y. Tian, B. Xu, and Z. Zhao, Inter. J. Refract. Metals Hard Mater. 33 (2012) 93.

[62] Z. Q. Lv, Z. F. Zhang, Q. Zhang, et al., Solid State Sci. 56 (2016) 16.

[63] J. M. Chapp, N. Martin, J. Lintymer, et al., Appl. Surf. Sci. 253 (2007) 5312.

[64] O. Banakh, M. Moussa, J. Matthey, et al., Appl. Surf. Sci. 317 (2014) 986.

[65] S. Hassani, M. Bielawski, W. Beres, et al., Surf. Coat. Technol. 203 (2008) 204.

[66] K. L. Johnson and K. L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge (1987).

[67] Y. Zhao, J. Yu, L. Wu, et al., Computat. Mater. Sci. 124 (2016) 273.

基金

The authors would like to acknowledge the financial support of University of Tehran Science and Technology Park for this research under Grant No. 94061


PDF(3168 KB)

609

Accesses

0

Citation

Detail

段落导航
相关文章

/