We propose a space-borne gravitational-wave detection scheme, called atom interferometric gravitational-wave space observatory (AIGSO). It is motivated by the progress in the atomic matter-wave interferometry, which solely utilizes the standing light waves to split, deflect and recombine the atomic beam. Our scheme consists of three drag-free satellites orbiting the Earth. The phase shift of AIGSO is dominated by the Sagnac effect of gravitational-waves, which is proportional to the area enclosed by the atom interferometer, the frequency and amplitude of gravitational-waves. The scheme has a strain sensitivity < 10-20/√Hz in the 100 mHz-10 Hz frequency range, which fills in the detection gap between space-based and ground-based laser interferometric detectors. Thus, our proposed AIGSO can be a good complementary detection scheme to the space-borne laser interferometric schemes, such as LISA. Considering the current status of relevant technology readiness, we expect our AIGSO to be a promising candidate for the future space-based gravitational-wave detection plan.
Abstract
We propose a space-borne gravitational-wave detection scheme, called atom interferometric gravitational-wave space observatory (AIGSO). It is motivated by the progress in the atomic matter-wave interferometry, which solely utilizes the standing light waves to split, deflect and recombine the atomic beam. Our scheme consists of three drag-free satellites orbiting the Earth. The phase shift of AIGSO is dominated by the Sagnac effect of gravitational-waves, which is proportional to the area enclosed by the atom interferometer, the frequency and amplitude of gravitational-waves. The scheme has a strain sensitivity < 10-20/√Hz in the 100 mHz-10 Hz frequency range, which fills in the detection gap between space-based and ground-based laser interferometric detectors. Thus, our proposed AIGSO can be a good complementary detection scheme to the space-borne laser interferometric schemes, such as LISA. Considering the current status of relevant technology readiness, we expect our AIGSO to be a promising candidate for the future space-based gravitational-wave detection plan.
关键词
gravitational waves /
atomic Sagnac interferometer /
space-borne detector
{{custom_keyword}} /
Key words
gravitational waves /
atomic Sagnac interferometer /
space-borne detector
{{custom_keyword}} /
中图分类号:
04.80.Nn
04.80.-y
95.55.Ym
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] J. M. Weisberg, D. J. Nice, and J. H. Taylor, Astrophys. J. 722 (2010) 1030.
[2] L. Ju, D. G. Blair, and C. Zhao, Rep. Prog. Phys. 63 (2000) 1317, and references therein.
[3] B. P. Abbott, et al., (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116 (2016) 061102.
[4] B. P. Abbott, et al., (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116 (2016) 241103.
[5] B. P. Abbott, et al., (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 118 (2017) 221101.
[6] B. P. Abbott, et al., (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119 (2017) 141101.
[7] B. P. Abbott, et al., (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119 (2017) 161101.
[8] K. Danzmann, et al., Assessment Study Report ESA/SRE 3 (2011) 2.
[9] J. Luo, et al., Class. Quantum Grav. 33 (2016) 035010.
[10] M. Ando, et al., Class. Quantum Grav. 27 (2010) 084010.
[11] E. S. Phinney, et al., NASA Mission Concept Study, (2003).
[12] W. T. Ni, Gravitational Wave (GW) Classification, Space GW Detection Sensitivities and AMIGO (Astrodynamical Middle-frequency Interferometric GW Observatory), arXiv:gr-qc/1709.05659.
[13] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Rev. Mod. Phys. 81 (2009) 1051, and references therein.
[14] R. Bouchendira, P. Cladé, S. Guellati-Khélifa, et al., Phys. Rev. Lett. 106 (2011) 080801.
[15] G. Rosi, F. Sorrentino, L. Cacciapuoti, et al., Nature (London) 510 (2014) 518.
[16] P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 88 (2016) 035009.
[17] L. Zhou, S. Long, B. Tang, et al., Phys. Rev. Lett. 115 (2015) 013004.
[18] R. Y. Chiao and A. D. Speliotopoulos, J. Mod. Opt. 51 (2004) 861.
[19] A. Roura, D. R. Brill, B. L. Hu, et al., Phys. Rev. D 73 (2006) 084018.
[20] G. M. Tino and F. Vetrano, Class. Quantum Grav. 24 (2007) 2167.
[21] S. Dimopoulos, P. W. Graham, J. M. Hogan, et al., Phys. Rev. D 78 (2008) 122002.
[22] D. Gao, P. Ju, B. Zhang, and M. Zhan, Gen. Rel. Grav. 43 (2011) 2027.
[23] J. M. Hogan, et al., Gen. Rel. Grav. 43 (2011) 1953.
[24] J. M. Hogan and M. A. Kasevich, Phys. Rev. A 94 (2016) 033632.
[25] K. Sun, M. M. Fejer, E. Gustafson, and R. L. Byer, Phys. Rev. Lett. 76 (1996) 3053.
[26] Y. Chen, Phys. Rev. D 67 (2003) 122004.
[27] G. Scoles, editor, Atomic and Molecular Beam Methods, Vols. 1, 2, Oxford University Press, New York (1992).
[28] R. L. Leroy, T. R. Govers, and J. M. Deckers, Can. J. Chem. 48(6) (1970) 927.
[29] E. M. Rasel, M. K. Oberthaler, H. Batelaan, et al., Phys. Rev. Lett. 75 (1995) 2633.
[30] S. W. Chiow, T. Kovachy, H. C. Chien, and M. A. Kasevich, Phys. Rev. Lett. 107 (2011) 130403.
[31] P. C. Peters, Phys. Rev. 136 (1964) B1224.
[32] R. K. Kopparapu and J. E. Tohline, Astrophys. J. 655 (2007) 1025.
[33] M. Hohensee, S. Y. Lan, R. Houtz, et al., Gen. Rel. Grav. 43 (2011) 1905.
[34] J. B. Holberg, E. M. Sion, T. Oswalt, et al., Astronom. J. 135 (2008) 1225.
[35] J. Abadie, et al., Class. Quantum Grav. 27 (2010) 173001.
[36] B. P. Abbott, et al., Phys. Rev. X 6 (2016) 041015.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
Supported by the National Key Research Program of China under Grant No. 2016YFA0302002, the National Science Foundation of China under Grant Nos. 11227803 and 91536221, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDB21010100
{{custom_fund}}