Operational Solution to the Nonlinear Klein-Gordon Equation

G. Bengochea, L. Verde-Star, M. Ortigueira

理论物理通讯 ›› 2018, Vol. 69 ›› Issue (05) : 506-512.

PDF(295 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(295 KB)
理论物理通讯 ›› 2018, Vol. 69 ›› Issue (05) : 506-512.

Operational Solution to the Nonlinear Klein-Gordon Equation

  • G. Bengochea1, L. Verde-Star1, M. Ortigueira2
作者信息 +

Operational Solution to the Nonlinear Klein-Gordon Equation

  • G. Bengochea1, L. Verde-Star1, M. Ortigueira2
Author information +
文章历史 +

摘要

We obtain solutions of the nonlinear Klein-Gordon equation using a novel operational method combined with the Adomian polynomial expansion of nonlinear functions. Our operational method does not use any integral transforms nor integration processes. We illustrate the application of our method by solving several examples and present numerical results that show the accuracy of the truncated series approximations to the solutions.

Abstract

We obtain solutions of the nonlinear Klein-Gordon equation using a novel operational method combined with the Adomian polynomial expansion of nonlinear functions. Our operational method does not use any integral transforms nor integration processes. We illustrate the application of our method by solving several examples and present numerical results that show the accuracy of the truncated series approximations to the solutions.

关键词

operational calculus / partial differential equations / nonlinear Klein-Gordon equation

Key words

operational calculus / partial differential equations / nonlinear Klein-Gordon equation

引用本文

导出引用
G. Bengochea, L. Verde-Star, M. Ortigueira. Operational Solution to the Nonlinear Klein-Gordon Equation[J]. 理论物理通讯, 2018, 69(05): 506-512
G. Bengochea, L. Verde-Star, M. Ortigueira. Operational Solution to the Nonlinear Klein-Gordon Equation[J]. Communications in Theoretical Physics, 2018, 69(05): 506-512
中图分类号: 02.30.Jr    02.30.Vv   

参考文献

[1] E. Zauderer, Partial Differential Equations of Applied Mathematics, John Wiley & Sons, New Jersey (2006).

[2] Roger K. Dodd, J. Chris Eilbeck, John D. Gibbon, and Hedley C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, Inc. Harcourt Brace Jovanovich, Publishers, London, New York (1982).

[3] R. Mittal and R. Bhatia, Int. J. Comput. Math. 92(2015) 2139.

[4] E. Deeba and S. Khuri, J. Comput. Phys. 124(1996) 442.

[5] D. Kumar, J. Singh, S. Kumar, et al., Alexandria Eng. J. 53(2014) 469.

[6] H. Dong-mei, Z. Guo-liang, and L. Zhang, Math. Probl. Eng. 2015 (2015) 1.

[7] Nakao Hayashi and Pavel I. Naumkin, Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 59(2008) 1002.

[8] G. Bengochea and L. Verde-Star, Adv. Appl. Math. 47(2011) 330.

[9] J. Mikusiński, Operational Calculus, Pergamon Press, Oxford (1959).

[10] G. Bengochea, Appl. Math. Lett. 32 (2014) 48.

[11] G. Bengochea and L. Verde-Star, Math. Meth. Appl. Sci. 38(2015) 4630.

[12] G. Bengochea, Appl. Math. Comput. 232(2014) 424.

[13] G. Bengochea, Fractional Calculus and Applied Analysis 18(2015) 1201.

[14] G. Bengochea and M. Ortigueira, J. Appl. Analysis 22(2016) 131.

[15] G. Bengochea and M. D. Ortigueira, Int. J. Dyn. Control 5 (2017) 61.

[16] G. Adomian, Math. Comput. Model. 13(1990) 17.

[17] Y. Cherruault and G. Adomian, Math. Comput. Model. 18(1993) 103.

[18] G. Guellal and Y. Cherruault, Int. J. Bio-Medical Comput. 36(1994) 223.

[19] M. M. Hosseini and H. Nasabzadeh, Appl. Math. Comput. 182(2006) 536.

[20] P. Guo, K. Liew, and P. Zhu, Appl. Math. Model. 39(2015) 2917.

[21] D. Kaya and Salah El-Sayed, Appl. Math. Comput. 156(2004) 341.

基金

Supported by Grant SEP-CONACYT 220603, the first author was supported by SEP-PRODEP through the project UAM-PTC-630, the third author was supported by Portuguese National Funds through the FCT Foundation for Science and Technology under the project PEst-UID/EEA/00066/2013


PDF(295 KB)

420

Accesses

0

Citation

Detail

段落导航
相关文章

/