Symmetric Surface Momentum and Centripetal Force for a Particle on a Curved Surface

M. S. Shikakhwa

理论物理通讯 ›› 2018, Vol. 70 ›› Issue (03) : 263-267.

PDF(102 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(102 KB)
理论物理通讯 ›› 2018, Vol. 70 ›› Issue (03) : 263-267.

Symmetric Surface Momentum and Centripetal Force for a Particle on a Curved Surface

  • M. S. Shikakhwa
作者信息 +

Symmetric Surface Momentum and Centripetal Force for a Particle on a Curved Surface

  • M. S. Shikakhwa
Author information +
文章历史 +

摘要

The Hermitian surface momentum operator for a particle confined to a 2D curved surface spanned by orthogonal coordinates and embedded in 3D space is expressed as a symmetric expression in derivatives with respect to the surface coordinates and so is manifestly along the surface. This is an alternative form to the one reported in the literature and usually named geometric momentum, which has a term proportional to the mean curvature along the direction normal to the surface, and so "apparently" not along the surface. The symmetric form of the momentum is the sum of two symmetric Hermitian operators along the two orthogonal directions defined by the surface coordinates. The centripetal force operator for a particle on the surface of a cylinder and a sphere is calculated by taking the time derivative of the momentum and is seen to be a symmetrization of the well-known classical expressions.

Abstract

The Hermitian surface momentum operator for a particle confined to a 2D curved surface spanned by orthogonal coordinates and embedded in 3D space is expressed as a symmetric expression in derivatives with respect to the surface coordinates and so is manifestly along the surface. This is an alternative form to the one reported in the literature and usually named geometric momentum, which has a term proportional to the mean curvature along the direction normal to the surface, and so "apparently" not along the surface. The symmetric form of the momentum is the sum of two symmetric Hermitian operators along the two orthogonal directions defined by the surface coordinates. The centripetal force operator for a particle on the surface of a cylinder and a sphere is calculated by taking the time derivative of the momentum and is seen to be a symmetrization of the well-known classical expressions.

关键词

quantum mechanics on a curved surface / geometric momentum / quantum centripetal force

Key words

quantum mechanics on a curved surface / geometric momentum / quantum centripetal force

引用本文

导出引用
M. S. Shikakhwa. Symmetric Surface Momentum and Centripetal Force for a Particle on a Curved Surface[J]. 理论物理通讯, 2018, 70(03): 263-267
M. S. Shikakhwa. Symmetric Surface Momentum and Centripetal Force for a Particle on a Curved Surface[J]. Communications in Theoretical Physics, 2018, 70(03): 263-267

参考文献

[1] P. A. M. Dirac, Lectures on Quantum Mechanics, Yeshiva University, New York (1964); Canad. J. Math. 2 (1950) 129.

[2] Q. H. Liu, J. Math. Phys. 54 (2013) 122113.

[3] T. Homma, T. Inamoto, and T. Miyazaki, Phys. Rev. D 42 (1990) 2049.

[4] M. Ikegami, Y. Nagaoka, S. Takagi, and T. Tanzawa, Prog. Theor. Phys. 88 (1992) 229.

[5] H. Jensen and H. Koppe, Ann. Phys. 63 (1971) 586.

[6] R. C. T. da Costa, Phys. Rev. A 23 (1981) 1982.

[7] Dingkun Lian, Liangdong Hu, and Quanhui Liu, Ann. Phys. 530 (2018) 1700415.

[8] M. S. Shikakhwa and N. Chair, Phys. Lett. A 380 (2016) 1985.

[9] M. S. Shikakhwa and N. Chair, Phys. Lett. A 380 (2016) 2876.

[10] M. S. Shikakhwa and N. Chair, Eur. J. Phys. 38 (2017) 015402.

[11] Y. L. Wang and H. S. Zong, Ann. Phys. 364 (2016) 68.

[12] M. Encinosa, Phys. Rev. A 73 (2006) 0121012.

[13] G. Ferrari and G. Coughi, Phys. Rev. Lett. 100 (2008) 240403.

[14] B. Jensen and R. Dandoloff, Phys. Rev. A 80 (2009) 052109.

[15] B. Jensen and R. Dandoloff, Phys. Rev. A 81 (2010) 049905(E).

[16] Carmine Ortix and Jeroen van den Brink, Phys. Rev. B 83 (2011) 113406.

[17] M. V. Entin and L. I. Magarill, Phys. Rev. B 64 (2001) 085330.

[18] M. H. Liu, et al., Phys. Rev. B 84 (2011) 085307.

[19] T. C. Cheng, J. Y. Chen, and C. R. Chang, Phys. Rev. B 84 (2011) 214423.

[20] J. Y. Chang, J. S. Wu, and C. R. Chang, Phys. Rev. B 87 (2013) 174413554.

[21] T. Kosugi, J. Phys. Soc. Jpn. 80 (2011) 073602.

[22] K. C. Chen and C. R. Chang, SPIN 03 (2013) 1340006.

[23] Y. L. Wang, H. Jiang, and H. S. Zong, Phys. Rev. A 96 (2017) 022116.

[24] Y. L. Wang, M. Y. Lai, F. Wang, et al., Phys. Rev. A 97 (2018) 042108.

[25] Q. H. Liu, C. L. Tong, and M. M. Lai, J. Phys. A 40 (2007) 4161.

[26] Q. H. Liu, J. Phys. Soc. Jpn. 82 (2013) 104002.

[27] L. D. Hu, D. K. Lian, and Q. H. Liu, Eur. Phys. J. C 76 (2016) 655.

[28] M. S. Shikakhwa, preprint arXiv:1801.04610[quant-ph] (2018).

[29] G. Arfken and J. Weber, Mathematical Methods for Physicists, sixth edition, Elsevier (2005).

[30] Q. H. Liu, L. H. Tang, and D. M. Xun, Phys. Rev. A 84 (2011) 042101.

PDF(102 KB)

289

Accesses

0

Citation

Detail

段落导航
相关文章

/