This communication addresses the impact of heat source/sink along with mixed convection on oblique flow of Casson fluid having variable viscosity. Similarity analysis has been utilized to model governing equations, which are simplified to set of nonlinear differential equations. Computational procedure of shooting algorithm along with 4th order Range-Kutta-Fehlberg scheme is opted to attain the velocity and temperature distributions. Impact of imperative parameters on Casson fluid flow, temperature, significant physical quantities such as skin friction, local heat flux and streamlines are displayed via graphs.
Abstract
This communication addresses the impact of heat source/sink along with mixed convection on oblique flow of Casson fluid having variable viscosity. Similarity analysis has been utilized to model governing equations, which are simplified to set of nonlinear differential equations. Computational procedure of shooting algorithm along with 4th order Range-Kutta-Fehlberg scheme is opted to attain the velocity and temperature distributions. Impact of imperative parameters on Casson fluid flow, temperature, significant physical quantities such as skin friction, local heat flux and streamlines are displayed via graphs.
关键词
oblique stagnation point flow /
variable viscosity /
partial slip /
mix convection /
heat generation/absorption /
Runge-Kutta Fehlberg scheme
{{custom_keyword}} /
Key words
oblique stagnation point flow /
variable viscosity /
partial slip /
mix convection /
heat generation/absorption /
Runge-Kutta Fehlberg scheme
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] F. Labropulu, D. Li, and I. Pop, Int. J. Therm. Sci. 49 (2010) 1042.
[2] C. Y. Wang, Phys. Fluids 28 (1985) 2046.
[3] M. Reza and A. S. Gupta, Fluid Dyn. Res. 37 (2005) 334.
[4] D. Li, F. Labropulu, and I. Pop, Int. J. NonLinear Mech. 44 (2009) 1024.
[5] M. M. Rahman, T. Grosan, and I. Pop, Int. J. Numer. Methods Heat Fluid Flow. 26 (2016) 108.
[6] Y. Lv and L. Zheng, Int. J. Engg. Sci. Innov. Tech. 2 (2013) 200.
[7] S. Shahmohamadi, Mechanica 47 (2011) 1313.
[8] S. Nadeem and R. UlHaq, Sci. Iran 19 (2012) 1550.
[9] S. Nadeem, R. Mehmood, and N. S. Akbar, J. Comput. Theor. Nanosci. 11 (2014) 1422.
[10] R. Ellahi and A. Arshad, Math. Comput. Model. 52 (2010) 1783.
[11] E. M. A. Elbashbeshy and M. A. A. Bazid, Can. J. Phys. 81 (2003) 699.
[12] J. C. Umavathi, Transp. Porous Media. 108 (2015) 659.
[13] Y. Lin and L. Zheng, AIP Advances. 5 (2015) 107225.
[14] Y. Lin, L. Zheng, and X. Zhang, Mech. Time-Depend. Materials. 19 (2015) 519.
[15] Y. Lin, B. Li, L. Zheng, and G. Chen, Powder Technology 301 (2016) 379.
[16] Y. Lin, L. Zheng, and G. Chen, Powder Technology 274 (2015) 324.
[17] Y. Lin, L. Zheng, and L. Ma, Appl. Math. Mech. 37 (12) (2016) 1587.
[18] Y. Lin and Y. Jiang, Int. J. Heat Mass Trans. 123 (2018) 569.
[19] S. Manjunatha and B. J. Gireesha, Ain Shams Engg. J. 7 (2016) 505.
[20] A. Noghrehabadi, R. Pourrajab, and M. Ghalambaz, Int. J. Therm. Sci. 54 (2012) 253.
[21] S. Mukhopadhyay and R. S. R. Gorla, Heat Mass Transf. 48 (2012) 1773.
[22] K. Das, Comput. Fluids 64 (2012) 34.
[23] R. A. Van Gorder and K. Vajravelu, Appl. Math. Comput. 217 (2011) 5810.
[24] A. Alsaedi, M. Awais, and T. Hayat, Commun. Nonl. Sci. Numer. Simul. 17 (2012) 4210.
[25] K. Saha, K. M. Salahuddin, and M. A. Taher, Amer. J. Appl. Math. 3 (2014) 20.
[26] Z. Mehmood, R. Mehmood, and Z. Iqbal, Commun. Theor. Phys. 67 (2017) 443.
[27] B. Ahmad, Z. Iqbal, and E. Azhar, Int. J. Appl. Electrom. Mech. 54 (2017) 211.
[28] S. Rana, R. Mehmood, and N. S. Akbar, J. Mol. Liq. 222 (2016) 1010.
[29] Z. Iqbal, R. Mehmood, E. Azhar, and Z. Mehmood, Eur. Phys. J. Plus. 132 (2017) 11443.
[30] W. A. Khan, O. D. Makinde, and Z. H. Khan, Int. J. Heat Mass Transf. 96 (2016) 525.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}