Impact of Internal Heat Source on Mixed Convective Transverse Transport of Viscoplastic Material under Viscosity Variation

R. Tabassum, R. Mehmood, E. N. Maraj

理论物理通讯 ›› 2018, Vol. 70 ›› Issue (04) : 423-429.

PDF(1377 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(1377 KB)
理论物理通讯 ›› 2018, Vol. 70 ›› Issue (04) : 423-429.

Impact of Internal Heat Source on Mixed Convective Transverse Transport of Viscoplastic Material under Viscosity Variation

  • R. Tabassum1, R. Mehmood2, E. N. Maraj2
作者信息 +

Impact of Internal Heat Source on Mixed Convective Transverse Transport of Viscoplastic Material under Viscosity Variation

  • R. Tabassum1, R. Mehmood2, E. N. Maraj2
Author information +
文章历史 +

摘要

This communication addresses the impact of heat source/sink along with mixed convection on oblique flow of Casson fluid having variable viscosity. Similarity analysis has been utilized to model governing equations, which are simplified to set of nonlinear differential equations. Computational procedure of shooting algorithm along with 4th order Range-Kutta-Fehlberg scheme is opted to attain the velocity and temperature distributions. Impact of imperative parameters on Casson fluid flow, temperature, significant physical quantities such as skin friction, local heat flux and streamlines are displayed via graphs.

Abstract

This communication addresses the impact of heat source/sink along with mixed convection on oblique flow of Casson fluid having variable viscosity. Similarity analysis has been utilized to model governing equations, which are simplified to set of nonlinear differential equations. Computational procedure of shooting algorithm along with 4th order Range-Kutta-Fehlberg scheme is opted to attain the velocity and temperature distributions. Impact of imperative parameters on Casson fluid flow, temperature, significant physical quantities such as skin friction, local heat flux and streamlines are displayed via graphs.

关键词

oblique stagnation point flow / variable viscosity / partial slip / mix convection / heat generation/absorption / Runge-Kutta Fehlberg scheme

Key words

oblique stagnation point flow / variable viscosity / partial slip / mix convection / heat generation/absorption / Runge-Kutta Fehlberg scheme

引用本文

导出引用
R. Tabassum, R. Mehmood, E. N. Maraj. Impact of Internal Heat Source on Mixed Convective Transverse Transport of Viscoplastic Material under Viscosity Variation[J]. 理论物理通讯, 2018, 70(04): 423-429
R. Tabassum, R. Mehmood, E. N. Maraj. Impact of Internal Heat Source on Mixed Convective Transverse Transport of Viscoplastic Material under Viscosity Variation[J]. Communications in Theoretical Physics, 2018, 70(04): 423-429

参考文献

[1] F. Labropulu, D. Li, and I. Pop, Int. J. Therm. Sci. 49 (2010) 1042.

[2] C. Y. Wang, Phys. Fluids 28 (1985) 2046.

[3] M. Reza and A. S. Gupta, Fluid Dyn. Res. 37 (2005) 334.

[4] D. Li, F. Labropulu, and I. Pop, Int. J. NonLinear Mech. 44 (2009) 1024.

[5] M. M. Rahman, T. Grosan, and I. Pop, Int. J. Numer. Methods Heat Fluid Flow. 26 (2016) 108.

[6] Y. Lv and L. Zheng, Int. J. Engg. Sci. Innov. Tech. 2 (2013) 200.

[7] S. Shahmohamadi, Mechanica 47 (2011) 1313.

[8] S. Nadeem and R. UlHaq, Sci. Iran 19 (2012) 1550.

[9] S. Nadeem, R. Mehmood, and N. S. Akbar, J. Comput. Theor. Nanosci. 11 (2014) 1422.

[10] R. Ellahi and A. Arshad, Math. Comput. Model. 52 (2010) 1783.

[11] E. M. A. Elbashbeshy and M. A. A. Bazid, Can. J. Phys. 81 (2003) 699.

[12] J. C. Umavathi, Transp. Porous Media. 108 (2015) 659.

[13] Y. Lin and L. Zheng, AIP Advances. 5 (2015) 107225.

[14] Y. Lin, L. Zheng, and X. Zhang, Mech. Time-Depend. Materials. 19 (2015) 519.

[15] Y. Lin, B. Li, L. Zheng, and G. Chen, Powder Technology 301 (2016) 379.

[16] Y. Lin, L. Zheng, and G. Chen, Powder Technology 274 (2015) 324.

[17] Y. Lin, L. Zheng, and L. Ma, Appl. Math. Mech. 37 (12) (2016) 1587.

[18] Y. Lin and Y. Jiang, Int. J. Heat Mass Trans. 123 (2018) 569.

[19] S. Manjunatha and B. J. Gireesha, Ain Shams Engg. J. 7 (2016) 505.

[20] A. Noghrehabadi, R. Pourrajab, and M. Ghalambaz, Int. J. Therm. Sci. 54 (2012) 253.

[21] S. Mukhopadhyay and R. S. R. Gorla, Heat Mass Transf. 48 (2012) 1773.

[22] K. Das, Comput. Fluids 64 (2012) 34.

[23] R. A. Van Gorder and K. Vajravelu, Appl. Math. Comput. 217 (2011) 5810.

[24] A. Alsaedi, M. Awais, and T. Hayat, Commun. Nonl. Sci. Numer. Simul. 17 (2012) 4210.

[25] K. Saha, K. M. Salahuddin, and M. A. Taher, Amer. J. Appl. Math. 3 (2014) 20.

[26] Z. Mehmood, R. Mehmood, and Z. Iqbal, Commun. Theor. Phys. 67 (2017) 443.

[27] B. Ahmad, Z. Iqbal, and E. Azhar, Int. J. Appl. Electrom. Mech. 54 (2017) 211.

[28] S. Rana, R. Mehmood, and N. S. Akbar, J. Mol. Liq. 222 (2016) 1010.

[29] Z. Iqbal, R. Mehmood, E. Azhar, and Z. Mehmood, Eur. Phys. J. Plus. 132 (2017) 11443.

[30] W. A. Khan, O. D. Makinde, and Z. H. Khan, Int. J. Heat Mass Transf. 96 (2016) 525.

PDF(1377 KB)

294

Accesses

0

Citation

Detail

段落导航
相关文章

/