The entanglement between two stationary qubits is a kind of valuable quantum resources in quantum information or quantum network. This paper investigates the time evolution of the entanglement between two atoms, which are initially prepared in the Bell states and each of which interacts with its own cavity field in the identical and non-identical double damping Jaynes-Cummings (J-C) system. It mainly considers the effect of the atomic spontaneous decay Γ and the decay of cavity field κ on the two-qubit entanglement in such system. While causing the decay of entanglement, Γ and κ can also play a positive role in the entanglement evolution, which may imply a way to better control and maintain the entanglement. What is more, the rules governing the transfer of entanglement between two-qubit subsystems in strong coupling regime are finally studied by taking Γ and κ into consideration.
Abstract
The entanglement between two stationary qubits is a kind of valuable quantum resources in quantum information or quantum network. This paper investigates the time evolution of the entanglement between two atoms, which are initially prepared in the Bell states and each of which interacts with its own cavity field in the identical and non-identical double damping Jaynes-Cummings (J-C) system. It mainly considers the effect of the atomic spontaneous decay Γ and the decay of cavity field κ on the two-qubit entanglement in such system. While causing the decay of entanglement, Γ and κ can also play a positive role in the entanglement evolution, which may imply a way to better control and maintain the entanglement. What is more, the rules governing the transfer of entanglement between two-qubit subsystems in strong coupling regime are finally studied by taking Γ and κ into consideration.
关键词
entanglement /
concurrence /
detuning /
decay
{{custom_keyword}} /
Key words
entanglement /
concurrence /
detuning /
decay
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge (2000).
[2] L. M. Duan and C. Monroe, Rev. Mod. Phys. 82 (2010) 1209.
[3] P. Berman, Cavity Quantum Electrodynamics, Academic Press, San Diego (1994).
[4] E. Knill, R. Laflamme, and G. J. Milburn, Nature (London) 409 (2001) 46.
[5] D. L. Moehring and B. B. Blinov, Nature Photonics 5 (2011) 454.
[6] T. Yu and J. H. Eberly, Phys. Rev. Lett. 93 (2004) 140404.
[7] M. Yönaç, T. Yu, and J. H. Eberly, J. Phys. B:At Mol. Opt. 39 (2006) S621.
[8] G. F. Zhang and S. S. Li, Solid State Commun. 138 (2006) 17.
[9] J. H. Huang and S. Y. Zhu, Phys. Rev. A 76 (2007) 062322.
[10] M. Ikram, F. L. Li, and M. S. Zubairy, Phys. Rev. A 75 (2007) 06236.
[11] G. F. Zhang, Chin. Phys. 16 (2007) 1855.
[12] R. Tahira, M. Ikram, T. Azim, and M. S. Zubairy, J. Phys. B:At Mol. Opt. 41 (2008) 205501.
[13] J. H. Eberly and T. Yu, Science 323 (2009) 598.
[14] Z. Ficek, Front. Phys. China 5 (2010) 26.
[15] A. Veitia, J. Jing, T. Yu, and C. W. Wong, Phys. Lett. A 376 (2012) 2755.
[16] Y. Chen, J. Q. You, and T. Yu, Phys. Rev. A 90 (2014) 052104.
[17] M. P. Almeida, F. de Melo, M. Hor-Meyll, et al., Science 316 (2007) 579.
[18] J. S. Xu, C. F. Li, M. Gong, et al., Phys. Rev. Lett. 104 (2010) 100502.
[19] M. Yönaç, T. Yu, and J. H. Eberly, J. Phys. B:At Mol. Opt. 40 (2007) S45.
[20] S. Chan, M. D. Reid, and Z. Ficek, J. Phys. B:At Mol. Opt. 42 (2009) 065507.
[21] S. Chan, M. D. Reid, and Z. Ficek, J. Phys. B:At Mol. Opt. 43 (2010) 215505.
[22] B. Bellomo, R. Lo Franco, and G. Compagno, Phys. Rev. Lett. 99 (2007) 160502.
[23] B. Bellomo, R. Lo Franco, and G. Compagno, Phys. Rev. A 77 (2008) 032342.
[24] B. Bellomo, G. Compagno, R. Lo Franco, et al., Phys. Scripta T143 (2011) 014004.
[25] S. Bougouffa and Z. Ficek, Phys. Rev. A 88 (2013) 022317.
[26] K. M. Fan and G. F. Zhang, Acta Phys. Sin. Ch. Ed. 62 (2013) 130301.
[27] K. Aloufi, S. Bougouffa, and Z. Ficek, Phys. Scripta 90 (2015) 074020.
[28] M. Qurban, R. Tahira, R. Ul-Islam, and M. Ikram, Opt. Commun. 366 (2016) 285.
[29] G. F. Zhang and X. C. Xie, Eur. Phys. J. D 60 (2010) 423.
[30] R. Tahira, G. Q. Ge, and M. Ikram, Laser Phys. Lett. 13 (2016) 125204.
[31] P. Lambropoulos and D. Petrosyan, Fundamentals of Quantum Optics and Quantum Information, Springer-Verlag, Berlin, Cambridge (2007).
[32] W. K. Wootters, Phys. Rev. Lett. 80 (1998) 2245.
[33] G. F. Zhang, J. Phys.:Condens. Matter 19 (2007) 456205.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
Supported by the National Natural Science Foundation of China under Grant No. 11504218, and the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices No. KF201704
{{custom_fund}}