A new type of homoclinic and heteroclinic solutions, i.e. homoclinic and heteroclinic breather solutions, for Zakharov system are obtained using extended homoclinic test and two-soliton methods, respectively. Moreover, the homoclinic and heteroclinic structure with local oscillation and mechanical feature different from homoclinic and heterocliunic solutions are investigated. Result shows complexity of dynamics for complex nonlinear evolution system. Moreover, the similarities and differences between homoclinic (heteroclinic) breather and homoclinic (heteroclinic) tube are exhibited. These results show that the diversity of the structures of homoclinic and heteroclinic solutions.
Abstract
A new type of homoclinic and heteroclinic solutions, i.e. homoclinic and heteroclinic breather solutions, for Zakharov system are obtained using extended homoclinic test and two-soliton methods, respectively. Moreover, the homoclinic and heteroclinic structure with local oscillation and mechanical feature different from homoclinic and heterocliunic solutions are investigated. Result shows complexity of dynamics for complex nonlinear evolution system. Moreover, the similarities and differences between homoclinic (heteroclinic) breather and homoclinic (heteroclinic) tube are exhibited. These results show that the diversity of the structures of homoclinic and heteroclinic solutions.
关键词
homoclinic wave /
heteroclinic wave /
breather type /
homoclinic test /
Zakharov system
{{custom_keyword}} /
Key words
homoclinic wave /
heteroclinic wave /
breather type /
homoclinic test /
Zakharov system
{{custom_keyword}} /
中图分类号:
47.90.+a
02.30.Jr
05.90.+m
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Y. Li, J. Nonlinear. Sci. 9 (1999) 363.
[2] J. Shatah and C. Zeng, Comm. Pure. Appl. Math. 53 (2000) 283.
[3] J. Huang and Z. Dai, Chaos, Solitons & Fractals 35 (2008) 996.
[4] Z. Dai and J. Huang, Chin. J. Phys. 43 (2005) 349.
[5] Z. Dai, J. Huang, M. Jiang, and S. Wang, Chaos, Solitons & Fractals 26 (2005) 1189.
[6] Y. Tan, X.T. He, S.G. Chen, and Y. Yang, Phys. Rev. A 45 (1992) 6109.
[7] G.M. Zaslavsky, Chaos in Dynamics Systems, Harwood, London (1985).
[8] Z.D. Dai, J.H. Huang, and M.R. Jiang, Phys. Lett. A 352 (2006) 411.
[9] Z. Dai and D. Xian, Comm. Nonlinear Sci. Num. Simul. 14 (2009) 3292.
[10] V.E. Zakharov, Sov. Phys. JETP 35 (1977) 908.
[11] Y.F. Guo, Z.D. Dai, and D.L. Li, Chin. J. Phys. 46 (2008) 570.
[12] C. Sulem and P. Sulem, Springer-Verlag, Berlin (2000).
[13] R. Hirota and J. Satsuma, Prog. Theor. Phys. Suppl. 59 (1976) 64.
[14] Z. Dai, S. Li, Q. Dai, and J. Huang, Chaos, Solitions & Fractals 34 (2007) 1148.
[15] Z.D. Dai, Z.J. Liu, and D.L. Li, Chin. Phys. Lett. 25 (2008) 1531.
[16] C.J. Wang, Z.D. Dai, G. Mu, and S.Q. Lin, Commun. Theor. Phys. 52 (2009) 862.
[17] J. Liu, Z.D. Dai, and S.Q. Lin, Commun. Theor. Phys. 53 (2010) 947.
[18] X. Yu, Y.T. Gao, Z.Y. Sun, and Y. Liu, Commun. Theor. Phys. 55 (2011) 629.
[19] Z.H. Xu, H.L. Chen, and D.Q. Xian, Commun. Theor. Phys. 57 (2012) 400.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
Supported by the Natural Science Foundation of China under Grant No. 11061028
{{custom_fund}}