New Homoclinic and Heteroclinic Solutions for Zakharov System

王传坚, 戴正德, 母贵

理论物理通讯 ›› 2012 ›› Issue (05) : 749-753.

PDF(155 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(155 KB)
理论物理通讯 ›› 2012 ›› Issue (05) : 749-753.

New Homoclinic and Heteroclinic Solutions for Zakharov System

作者信息 +

New Homoclinic and Heteroclinic Solutions for Zakharov System

Author information +
文章历史 +

摘要

A new type of homoclinic and heteroclinic solutions, i.e. homoclinic and heteroclinic breather solutions, for Zakharov system are obtained using extended homoclinic test and two-soliton methods, respectively. Moreover, the homoclinic and heteroclinic structure with local oscillation and mechanical feature different from homoclinic and heterocliunic solutions are investigated. Result shows complexity of dynamics for complex nonlinear evolution system. Moreover, the similarities and differences between homoclinic (heteroclinic) breather and homoclinic (heteroclinic) tube are exhibited. These results show that the diversity of the structures of homoclinic and heteroclinic solutions.

Abstract

A new type of homoclinic and heteroclinic solutions, i.e. homoclinic and heteroclinic breather solutions, for Zakharov system are obtained using extended homoclinic test and two-soliton methods, respectively. Moreover, the homoclinic and heteroclinic structure with local oscillation and mechanical feature different from homoclinic and heterocliunic solutions are investigated. Result shows complexity of dynamics for complex nonlinear evolution system. Moreover, the similarities and differences between homoclinic (heteroclinic) breather and homoclinic (heteroclinic) tube are exhibited. These results show that the diversity of the structures of homoclinic and heteroclinic solutions.

关键词

homoclinic wave / heteroclinic wave / breather type / homoclinic test / Zakharov system

Key words

homoclinic wave / heteroclinic wave / breather type / homoclinic test / Zakharov system

引用本文

导出引用
王传坚, 戴正德, 母贵. New Homoclinic and Heteroclinic Solutions for Zakharov System[J]. 理论物理通讯, 2012(05): 749-753
WANG Chuan-Jian, DAI Zheng-De, MU Gui. New Homoclinic and Heteroclinic Solutions for Zakharov System[J]. Communications in Theoretical Physics, 2012(05): 749-753
中图分类号: 47.90.+a    02.30.Jr    05.90.+m   

参考文献

[1] Y. Li, J. Nonlinear. Sci. 9 (1999) 363.

[2] J. Shatah and C. Zeng, Comm. Pure. Appl. Math. 53 (2000) 283.

[3] J. Huang and Z. Dai, Chaos, Solitons & Fractals 35 (2008) 996.

[4] Z. Dai and J. Huang, Chin. J. Phys. 43 (2005) 349.

[5] Z. Dai, J. Huang, M. Jiang, and S. Wang, Chaos, Solitons & Fractals 26 (2005) 1189.

[6] Y. Tan, X.T. He, S.G. Chen, and Y. Yang, Phys. Rev. A 45 (1992) 6109.

[7] G.M. Zaslavsky, Chaos in Dynamics Systems, Harwood, London (1985).

[8] Z.D. Dai, J.H. Huang, and M.R. Jiang, Phys. Lett. A 352 (2006) 411.

[9] Z. Dai and D. Xian, Comm. Nonlinear Sci. Num. Simul. 14 (2009) 3292.

[10] V.E. Zakharov, Sov. Phys. JETP 35 (1977) 908.

[11] Y.F. Guo, Z.D. Dai, and D.L. Li, Chin. J. Phys. 46 (2008) 570.

[12] C. Sulem and P. Sulem, Springer-Verlag, Berlin (2000).

[13] R. Hirota and J. Satsuma, Prog. Theor. Phys. Suppl. 59 (1976) 64.

[14] Z. Dai, S. Li, Q. Dai, and J. Huang, Chaos, Solitions & Fractals 34 (2007) 1148.

[15] Z.D. Dai, Z.J. Liu, and D.L. Li, Chin. Phys. Lett. 25 (2008) 1531.

[16] C.J. Wang, Z.D. Dai, G. Mu, and S.Q. Lin, Commun. Theor. Phys. 52 (2009) 862.

[17] J. Liu, Z.D. Dai, and S.Q. Lin, Commun. Theor. Phys. 53 (2010) 947.

[18] X. Yu, Y.T. Gao, Z.Y. Sun, and Y. Liu, Commun. Theor. Phys. 55 (2011) 629.

[19] Z.H. Xu, H.L. Chen, and D.Q. Xian, Commun. Theor. Phys. 57 (2012) 400.

基金

Supported by the Natural Science Foundation of China under Grant No. 11061028


PDF(155 KB)

1459

Accesses

0

Citation

Detail

段落导航
相关文章

/