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Abstract Based on the dielectric continuum model and Loudon’s uniaxial crystal model, the properties of the quasi-
confined (QC) optical phonon dispersions and the electron-QC phonons coupling functions in an asymmetric wurtzite
quantum well (QW) are deduced via the method of electrostatic potential expanding. The present theoretical scheme
can naturally reduce to the results in symmetric wurtzite QW once a set of symmetric structural parameters are chosen.
Numerical calculations on an asymmetric AlN/GaN/Al0.15Ga0.85N wurtzite QW are performed. A detailed comparison
with the symmetric wurtzite QW was also performed. The results show that the structural asymmetry of wurtzite QW
changes greatly the dispersion frequencies and the electrostatic potential distributions of the QC optical phonon modes.
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1 Introduction
In recent years, a considerable amount of research

has been devoted to electronic and optical properties
of quantum well (QW) based on wurtzite GaN, AlN,
InN, and their ternary compounds AlxGa1−xN and
InxGa1−xN.[1−6] This is mainly due to their wide direct
band-gaps covering from ultraviolet to red, which results
in their potential device application for high-brightness
blue/green light emitting diodes and laser diodes. The
group-III nitrides usually crystallize in wurtzite structure,
which makes their phonon spectra become much more
complex due to anisotropy of the crystal structure com-
pared with phonons in cubic crystals.[2−7] Hence it is very
important and necessary to understand the lattice dynam-
ics and electron-phonon interactions in wurtzite quantum
heterostructures.

Since the pioneer work of Licari[8] and Fuchs[9] on the
polar phonon modes in confined quantum systems, sev-
eral theoretical models, such as the dielectric continuum
(DC) models, the microscopic calculation models, the hy-
drodynamic models, and Huang–Zhu models have been
proposed successively.[10−15] The microscopic calculation
model[10,11] is the principal model based on first-principles
interatomic force constants. The DC model[12] uses the
electrostatic boundary conditions (BCs), while the hydro-
dynamic model[13,14] adopts mechanical BCs at the inter-
faces. But both of the two models have demerit for the de-
scription of the optical phonons in quantum confined sys-
tems, namely, the discontinuous mechanical BCs for DC
model and discontinuous electric BCs for hydrodynamic
model. The Huang–Zhu model[15] takes into account both
of the electrostatic and mechanical BCs, i.e., the continu-
ity of the tangential component of the electric field, the
normal component of electric displacement vector, and the
relative ionic displacement field at the heterointerfaces.

However, as pointed out by Klimin et al.,[16] the choice
of the BC becomes less critical if the observed physical
quantities include sum over all phonon modes. Moreover,
the calculation results of the phonon spectra and electron-
phonon scattering based on the DC model agree well with
those of microscopic model.[17] Hence the DC model is
widely employed in recent literature due to its validity and
simplicity. On the basis of the DC model and the Loudon’s
uniaxial crystal model, the works of polar phonon modes
have been successfully extended from the cubic-crystal
QWs to the wurtzite nitride QW systems.[2−6] For ex-
ample, Shi[5] solved exactly the equation of motion for
the p-polarization field in an arbitrary wurtzite multilayer
heterostructure by using transfer matrix method, whose
results reveal that five types of optical phonons including
the interface optical (IO) modes, the propagating modes,
quasi-confined (QC) modes, the exactly confined modes,
and the half-space (HS) modes, coexist in the wurtzite
multilayer quantum systems. After that work,[5] Li et al.[6]

further studied the dispersion properties of the QC opti-
cal phonon modes in multilayer wurtzite QWs, but only
the symmetric wurtzite AlN/GaN/AlN QWs were numer-
ically analyzed.

The vibration properties of lattice vibration as well
as relative optical characteristic in wurtzite GaN-based
QWs and super-lattices (SLs) have been extensively in-
vestigated in experiments.[18−21] For example, Sun et
al.[18] have demonstrated the large coherent longitudinal-
acoustic (LA) phonon oscillations[19] in InGaN/GaN mul-
tiple QWs via UV femtosecond pulse excitation. Mar-
tinez and coworkers[20] have also observed the terahertz
coherent LA phonons in a GaN/AlN SL by employing
femtosecond laser excitation and bolometric detection
techniques. Through the impulsive Raman scattering,
the coherent phonon modes of A1(LO), high- and low-
frequency E2 were revealed in bulk GaN materials in Yee’s
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experiment.[21] These results have great importance for ex-
planation and analysis of the optical properties and other
physical characteristic with polar phonons participation
in wurtzite nitride-based heterostructures.

All of the aforementioned theoretical works[2−6] dealt
with the optical phonon modes in symmetric wurtzite
quantum systems. However, to the best of our knowledge,
there is rare work considering the lattice dynamic prop-
erties in asymmetric wurtzite heterostructure systems. In
fact, Im et al.[22] have measured the confined effects of
carrier in an asymmetric wurtzite GaInN/AlGaN/GaN
QWs, and their result reveals that oscillator strength
has been enhanced in the asymmetric structure, which
indicates better carrier confinement in such asymmet-
ric structure relative to the symmetric one. Further-
more, Shi[23] and Kinsler[24] theoretically analyzed the
confined and IO phonon modes as well as their influences
on the electron-phonon scattering in asymmetric cubic
GaAs/AlxGa1−xAs QWs, respectively. Their results show
obviously different vibrational properties of phonon modes
and corresponding characteristic of electron-phonon cou-
pling. Stavrou and coauthors[25] calculated and compared
the electron capture rates in symmetric and asymmetric
CdSe QWs, and they also obtained the important con-
clusion that the capture rate in asymmetric structure ex-
hibites some interesting features other than in symmetric
structure. Moreover, the asymmetric quantum systems
have great applications in nonlinear optoelectronic devices
based on the optical rectification, electro-optics effect, and
second-harmonic generations.[26−28] Therefore, it is neces-
sary to investigate the lattice dynamic properties in the
asymmetric wurtzite systems.

Motivated by the work of QC phonon modes in sym-
metric wurtzite QWs,[6] we present a theoretical analysis
of the properties of the QC phonon modes in a wurtzite
asymmetric QW in the current paper. The main signif-
icance of this work is as follows. (i) Via the method of
the electrostatic potential expanding, the free QC phonon
field and corresponding Fröhlich electron-phonon interac-
tion Hamiltonian in an asymmetric wurtzite QW have
been derived. In fact, our theory can be looked on as
the general one for the QC optical phonons in wurtzite
QW, and it can reduce to the symmetric case once a set of
symmetric parameters are chosen.[6] (ii) The QC phonon
dispersion and the electron QC phonon coupling functions
have been calculated and analyzed, and a detailed com-
parison with those in symmetric wurtzite QW systems

has been exhibited. (iii) The present theoretical scheme
and numerical results are important and useful for fur-
ther experimental and theoretical investigations of the QC
phonon effects on some complicated asymmetric wurtzite
QW structures, such as the influence of QC phonons on
the second-order nonlinearity in the asymmetric wurtzite
QW systems.[26−28]

2 Theory
Considering an asymmetric wurtzite AlxGa1−xN

/GaN/AlyGa1−yN (x 6= y) QW model with the two het-
erostructures located at z = ±d, we take the z-axis along
the direction of the c-axis of the wurtzite material and
denote the radial directions as t. Due to the anisotropy of
wurtzite crystals, the polar phonon frequencies and the di-
electric function become direction-dependent and the lat-
ter is given by[2−6]

εi(ω) =

 εti(ω) 0 0
0 εti(ω) 0
0 0 εzi(ω)

 , (1)

where

εti(ω) = ε∞ti
ω2 − ω2

t,Li

ω2 − ω2
t,T i

,

εzi(ω) = ε∞zi

ω2 − ω2
z,Li

ω2 − ω2
z,T i

, i = 1, 2, 3 . (2)

Here ωz,L, ωz,T , ωt,L, and ωt,T are the zone center char-
acteristic frequencies of A1(LO), A1(TO), E1(LO), and
E1(TO) modes, respectively. The subscript i = 1, 2, and 3
denotes the AlxGa1−xN, GaN, and AlyGa1−yN materials,
respectively. Within the framework of Loudon’s uniaxial
crystal model, their dispersion relation for the extraor-
dinary phonons in a wurtzite bulk material is described
by[5]

εt(ω)k2
t + εz(ω)k2

z = 0 . (3)

Here kz (kt) is the phonon wave number in free z-direction
(t-direction) and ω is the frequency of polar phonon.
Without loss of generality, both kt and ω can be chosen
as real and positive numbers.[2−5] Based on the discussion
in Refs. [2] ∼ [6], we know that, when εt(ω)εz(ω) < 0, the
phonon modes correspond to the oscillating waves. On
the contrary, they correspond to the decaying ones when
εt(ω)εz(ω) > 0. In the next discussion, we will only focus
our attention on the QC optical phonon modes for sim-
plicity in the present paper. For convenience, we define a
function γi as

γi(ω) = sign
[ εti(ω)
εzi(ω)

]√∣∣∣ εti(ω)
εzi(ω)

∣∣∣, i = 1, 2, 3 . (4)

Let us discuss the frequency range where the QC phonon modes exist. In Fig. 1, the function γi(ω) as a function of ω is
plotted. The subscript i = 1, 2, and 3 corresponds to the AlN, GaN, and Al0.15Ga0.85N materials, respectively. For the
QC phonon modes, the function γi(ω) (i = 1, 3) should have positive values, and γ2(ω) should be negative value. The
electrostatic potential of the QC phonons could thus be oscillating waves in the well-layer material and be decaying
waves in the barrier-layer materials, which is similar to that of electrons confined in a QW of finite depth.[5,6] It is
obviously observed from the figure that, the frequencies of QC phonon modes in the wurtzite AlN/GaN/Al0.15Ga0.85N
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QW must fall into the two ranges, i.e., ωz,T2-ωz,T3 and ωz,L2-ωt,L2.

Fig. 1 The function γi(ω) as a function of ω. γi(ω) (i = 1, 2, 3) correspond to the AlN, GaN, and Al0.15Ga0.85N
materials, respectively.

Considering the case of free oscillations (the charge density ρ0(r) = 0) in the media and using the Maxwell equations,
the electrostatic potential of QC phonon modes can thus be written as[2−4]

Φ(r) = Φ( ρ, z) = e ikt·ρφ(z)

=
∑
kt

e ikt·ρ ×


A1 exp(γ1ktz), −∞ < z 6 −d ,

A2 cos(γ2ktz) + B2 sin(γ2ktz), −d < z 6 d ,

B3 exp(−γ3ktz), d < z < ∞ .

(5)

Using the boundary continuity conditions of the phonon potential functions and their normal components of electric
displace at the interfaces z = ±d, the dispersion relation equation of the QC phonon modes in the three-layer asymmetric
wurtzite QWs has been obtained, and it is given by

tan[2γ2ktd ] =
γ2εz,2(γ1εz,1 + γ3εz,3)
γ2
2ε2z,2 − γ1γ3εz,1εz,3

. (6)

In particular, for the symmetric wurtzite QW, i.e. γ1 = γ3 and εz,1 = εz,3, then equation (6) can be further simplified,
and it is given as

tan[2γ2ktd ] = 2
(γ2εz,2

γ1εz,1
− γ1εz,1

γ2εz,2

)−1

= 2

(√∣∣∣∣εt,2εz,2

εt,1εz,1

∣∣∣∣−
√∣∣∣∣εt,1εz,1

εt,2εz,2

∣∣∣∣
)−1

. (7)

Equation (7) is just the dispersion relation equation of QC phonon modes in a symmetric wurtzite AlN/GaN/AlN
QW.[6] This means that the present theories for the description of the QC optical phonons in asymmetric wurtzite QW
are more general than the symmetrical ones.

Using a similar quantization step to the IO phonons in wurtzite and cubic quantum systems,[5−7] we get the free
QC phonon field Hamiltonian as

HQC =
∑
kt

~ω
(
b†kt

bkt +
1
2

)
, (8)

where b†kt
and bkt are creation and annihilation boson operators for QC phonon of the kt-th mode. The Fröhlich

Hamiltonian describing the interaction between an electron and the QC optical phonons is given by
He−QC = −

∑
kt

ΓQC
kt

(z)[bkt
e ikt·ρ + H.c.] , (9)

where ΓQC
kt

(z) is the coupling function defined as

ΓQC
kt

(z) = Nkt
×


g1 exp(γ1ktz), −∞ < z 6 −d ,

g2 cos(γ2ktz) + g3 sin(γ2ktz), −d < z 6 d ,

g4 exp(−γ3ktz), d < z < ∞ ,

(10)
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where

g1 = −γ2εz,2 exp[−ktγ3d ] ,

g2 = exp[−(γ1 + γ3)ktd][γ1εz,1 sin(ktγ2d) + γ2εz,2 cos(ktγ2d)] ,

g3 = exp[−(γ1 + γ3)ktd][γ2εz,2 sin(ktγ2d)− γ1εz,1 cos(ktγ2d)] ,

g4 = − exp(−γ1ktd)[γ1εz,1 sin(2ktγ2d) + γ2εz,2 cos(2ktγ2d)] , (11)

and

|Nkt
| =

√
4π~ωe2

ktS
{(ε̄t1 + γ2

1 ε̄z1)g2
1 exp(−2γ1ktd)/γ1 + 2kt(ε̄t2 + γ2

2 ε̄z2)(g2
2 + g2

3)d

+ (ε̄t2 − γ2
2 ε̄z2)(g2

2 − g2
3) sin(2γ2ktd)/γ2 + (ε̄t3 + γ2

3 ε̄z3)g2
4 exp(−2γ3ktd)/γ3}−1/2 . (12)

In Eq. (12), ε̄u,v (u = t, z; v = 1, 2, 3) is the effective dielectric constant, and it is defined by

ε̄u,v =
( 1

εu,v − εu,v0
− 1

εu,v − εu,v∞

)−1

, u = t, z; v = 1, 2, 3 . (13)

3 Numerical Results and Discussions
We have calculated the dispersion frequencies of the QC optical phonons and the electron-QC phonon coupling func-

tion for an asymmetric wurtzite AlN/GaN/Al0.15Ga0.85N QW with the widths ∞/4 nm/∞. The material parameters
used in our calculations are listed in Table 1.[2,5]

Table 1 Zone-center energies (in meV) of poloar phonons, and optical and static dielectric
constant of wertzite AlN, GaN, and Al0.15Ga0.85N.[2,5]

Material A1(TO) E1(LO) A1(LO) E1(LO) ε∞ ε0

AlN 75.72 83.13 110.30 113.02 4.77 8.5

GaN 65.91 69.25 90.97 91.93 5.35 9.2

Al0.15Ga0.85N 67.382 71.332 93.870 95.009 5.253 9.095

Figure 2 shows the dispersion frequencies ~ω of the QC phonon modes as a function of the phonon wave-number
kt in the asymmetric wurtzite QW system. From the figure, it can be seen that the QC optical phonon modes exist in
the two regions: ωz,T2–ωz,T3 and ωz,L2–ωt,L2. This is completely consistent with the discussion of γi(ω) in Fig. 1. The
higher frequency branches in ωz,L2–ωt,L2 are labelled by iH (i = 1, 2, 3, . . .), and the lower frequency branches in the
frequency range ωz,T2–ωz,T3 are labelled by iL (i = 1, 2, 3, . . .). All the higher frequency branches are the monotonic and
incremental functions of the phonon wave-number kt, while all the low frequency ones are the monotonic and degressive
functions of kt. When kt is small, the dispersion of each branch of QC phonon modes is more obvious. Furthermore,
the figure also reveals the dispersion of the QC modes with small quantum number i is more dispersive than the modes
with large i. Our calculation shows that, for a certain kt, the dispersion equation (6) usually has infinite solutions for ω

in the range ωz,L2–ωt,L2, which means that there are infinite branches of QC modes in the higher frequency range. This
is quite similar to the case in the symmetric AlN/GaN/AlN wurtzite QW.[6] But the equation (6) usually has finite
solutions for ω in the range ωz,T2–ωz,T3 for a definite kt, which means that only finite branches of QC modes exist in the
low frequency range in an asymmetric AlN/GaN/Al0.15Ga0.85N QW. As kt increases, the number of lower frequency QC
branches will increase. This feature is obviously different from that in symmetric wurtzite QW,[6] which is completely
due to their different symmetries. In fact, the low frequency range of QC modes in symmetric AlN/GaN/AlN QW is
ωzT,GaN–ωtT,GaN, while that in asymmetric AlN/GaN/Al0.15Ga0.85N QW is ωzT,GaN–ωtT,Al0.15Ga0.85N. Thus the dispersion
curves of low frequency branches in asymmetric QW may be obtained via cutting off the dispersion frequency range of
ωtT,Al0.15Ga0.85N–ωtT,GaN in symmetric QW.[6] Via Fig. 1 or Eq. (4), it is clear to see that γ3(ω) takes a negative value
within the range ωtT,Al0.15Ga0.85N–ωtT,GaN, then the QC mode cannot exist in ωtT,Al0.15Ga0.85N–ωtT,GaN in the asymmetric
QW. The QC optical phonon modes will reduce to other oscillating modes, such as propagating optical phonon modes
and HS modes.[5] This result clearly illustrates that the structural asymmetry has great influence on the dispersion of
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QC optical phonon modes in wurtzite QW systems.

Fig. 2 The dispersion frequencies of the QC optical phonon modes ~ω as a function of the free wave-number in the xy
plane kt.

Fig. 3 The electron-QC phonon coupling functions ΓQC
kt

(z)
as a function of z for the low frequency branches (a) and the
high frequency branches (b) when ktd = 5.

The electron-QC phonon coupling functions ΓQC
kt

(z)
as a function of z are depicted for the lower frequency
branches and the higher frequency branches when ktd = 5
in Figs. 3(a) and 3(b), respectively. Via the figure, it
is clear to see that, the distributions of the electrostatic
potential for these QC phonon modes are neither symmet-
rical, nor antisymmetric, which is distinctly different from
those in symmetric wurtzite QW systems.[6,24] Comparing

Fig. 3(a) with Fig. 3(b), it is found that unsymmetries of
the lower frequency branches of QC modes are more ob-
vious than those of the high frequency branches of QC
modes. On the other hand, the coupling strength of the
higher frequency branches is nearly two-order magnitude
high than that of the lower ones. We also observe that, the
smaller the quantum number i is, the weaker the electron-
phonon interaction of the low frequency branches becomes
(Fig. 3(a)), but the stronger the electron-phonon interac-
tion of the high frequency branches becomes (Fig. 3(b)).
Furthermore, it is found that the damping of the elec-
trostatic potential of the QC modes in the AlN barrier
material is more quick than that in the Al0.15Ga0.85N bar-
rier material, which is due to the larger γ1 than γ3 for a
same QC mode frequency ω (Refer to the ranges of ωz,T2–
ωz,T3 and ωz,L2–ωt,L2 in Fig. 1). Via the discussion of
electron-QC phonons coupling functions, it is found that
the structural asymmetry also has significant influence on
the electron-phonon interactions.[23]

Finally, we would like to mention the corresponding
experiment works of QC and IO phonon modes in low-
dimensional quantum systems, as well as the significa-
tion of theoretical results based on DC models for rela-
tive experimental data. Scamarcio et al.[29] experimen-
tally observed the QC optical phonon modes in Si/GaAs
SL systems by means of Raman spectroscopy. Syme,
Lockwood and Baribeau[30] also confirm the existence of
QC optic modes in a (Si15Ge4)50 atom-layer SL. Dutta
and coworkers[31] saw the IO modes in wurtzite GaN/AlN
SLs via Raman scattering at room temperature, and they
found that the frequency and the lineshape of phonon
modes agree with predictions of the DC model. The
group of Davydov[32] investigated the effects of the layer
thickness and alloy composition on the Raman spectra of
hexagonal nitride multilayer structures. Recently, Lazic
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and collaborators[33] studied the influence of composition
and strain in InGaN/GaN multi-layer QWs on the po-
lar phonon frequencies using resonant Raman scattering
technology. Gleize et al.[34,35] measured and recorded Ra-
man spectra of IO modes and QC modes in GaN/AlN SL.
Their experimental data of polar phonons angular disper-
sion in wurtzite heterostructures are found to be in good
agreement with the results of a previous calculation based
on DC model and Loudon’s uniaxial crystal model. This
illustrates that the DC model and Loudon’s uniaxial crys-
tal model are appropriate for the description of optical
phonon modes in wurtzite heterostructures. However, to
the best of our knowledge, the observation of QC opti-
cal modes in wurtzite asymmetric GaN/AlxGa1−xN QW
has not been reported in experiment by now. Thus at
the moment, there are no available experimental data to
contrast our theoretical results obtained in the present
work. Of course, we hope that the present theoretical work
could stimulate and guide further experimental investiga-
tions of the lattice dynamical properties in the asymmetric
wurtzite heterostructures in the near future.

4 Summary
In conclusion, via the method of electrostatic potential

expanding, the QC optical phonon modes and Fröhlich
electron-QC optical phonon interactions in an asymmet-
ric wurtzite QW are deduced and analyzed within the
framework of the DC model and Loudon’s uniaxial crys-
tal model. Our theoretical scheme can be looked on as a
generalization of the QC optical phonons in an ordinary
wurtzite double heterostructures QWs, and it can be re-
duced to the situation of the symmetrical wurtzite QW
once a set of symmetrical parameters are adopted.[6] The
dispersion of the QC optical phonons and their electro-
static potential distributions for an asymmetric wurtzite
QW is calculated numerically, and a detailed compari-
son with the situation of symmetric wurtzite QW is per-
formed. Our results reveal that structural asymmetry of
the wurtzite QW greatly influences the dispersion behav-
iors of the QC modes and the electron-QC phonon inter-
action coupling properties.
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[17] H. Rücker, E. Molinari, and P. Lugli, Phys. Rev. B 44
(1991) 3463; 45 (1992) 6747.

[18] C.K. Sun, J.C. Liang, and X.Y. Yu, Phys. Rev. Lett. 84
(2000) 179.

[19] S. Tamura, D.C. Hurley, and J.P. Wolfe, Phys. Rev. B 38
(1988) 1427.

[20] C.E. Martinez, N.M. Stanton, P.M. Walker, et al., Appl.
Phys. Lett. 86 (2005) 221925.

[21] K.J. Yee, K.G. Lee, E. Oh, and D.S. Kim, Phys. Rev.
Lett. 88 (2002) 105501.

[22] J.S. Im, H. Kollmer, J. Off, F. Scholz, and A. Hangleiter,
Mater. Sci. Eng. B 59 (1999) 315.

[23] J.J. Shi, L. Shangguan, and S.H. Pan, Phys. Rev. B 47
(1993) 13471; J.J. Shi and S.H. Pan, Phys. Rev. B 51
(1995) 17681.

[24] P. Kinsler, R.W. Kelsall, and P. Harrison, Physica B 263-
264 (1999) 507.

[25] V.N. Stavrou, M. Babiker, and C.R. Bennett. J. Phys.:
Condens. Matter 13 (2001) 6489.

[26] A. Liu, S.L. Chuang, and C.Z. Ning, Appl. Phys. Lett.
76 (2000) 333.

[27] L. Zhang and H.J. Xie, Phys. Rev. B 68 (2003) 235315.

[28] J. Radovanovic, V. Milanovic, Z. Ikonic, and D. Indjin,
Phys. Rev. B 69 (2004) 115311.

[29] G. Scamarcio, V. Spagnolo, E. Molinari, et al., Phys. Rev.
B 46 (1992) 7296.

[30] R.W.G. Syme, D.J. Lockwood, and J.M. Baribeau, Phys.
Rev. B 59 (1999) 2207.

[31] M. Dutta, D. Alexson, L. Bergman, et al., Physica E 11
(2001) 277.

[32] V. Yu. Davydov, A.A. Klochikhin, I.E. Kozin, et al., Phys.
Stat. Sol. A 188 (2001) 863.

[33] S. Lazic, M. Moreno, J.M. Calleja, et al., Appl. Phys.
Lett. 86 (2005) 061905.

[34] J. Gleize, F. Demangeot, J. Frandon, et al., Phys. Status
Solidi A 183 (2001) 157.

[35] J. Gleize, J. Frandon, Demangeot, M.A. Renucci, et al.,

Mater. Sci. Eng. B 82 (2001) 27.


