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Abstract In this paper, under the Painlevé-integrable condition, the auto-Bäcklund transformations in different forms
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pair. Additionally, the compatibility for the truncated Painlevé expansion method and extended variable-coefficient
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1 Introduction

Since the discovery of the soliton,[1] it has been a ma-

jor concern to study the nonlinear evolution equations

(NLEEs) and solitons.[2−17] Originating from the inves-

tigation of the surfaces of constant negative curvature,
the auto-Bäcklund transformation provides an effective

means of constructing multi-soliton solutions for a wide

class of integrable NLEEs.[2,3] Recent investigations have

shown that much attention has been paid to the study of
NLEEs with variable coefficients and/or with additional

terms.[4−17]

In this paper, we would like to investigate the damped

variable-coefficient Korteweg-de Vries (vcKdV) model,[9]

ut + f(t)uux + g(t)uxxx + l(t)u = 0 , (1)

aiming at constructing its auto-Bäcklund transformations

through various methods under the Painlevé-integrable
condition, where the wave amplitude u(x, t) is a function

of the scaled “space” x and scaled “time” t, the real func-

tions f(t) 6= 0, g(t) 6= 0 and l(t) represent the coefficients

of the nonlinear, dispersive and damped terms, respec-
tively. Equation (1) can be widely used to describe the

nonlinear physical phenomena such as nonlinear excita-

tions of a Bose gas of impenetrable bosons, propagation of

weakly nonlinear solitary waves in a varied-depth shallow-

water tunnel, evolution of internal gravity waves, etc.

We notice that some other physically interesting

vcKdV models are actually transformable into the

damped vcKdV model without any constraint. For in-

stance, describing the nonlinear waves in a fluid-filled

tube[8] and trapped quasi-one-dimensional Bose–Einstein

condensates,[13] the following vcKdV model with dissipa-

tive and damped terms

vτ + f(τ ) v vζ + g(τ )vζζζ + l(τ )v + q(τ )vζ = 0 , (2)

can be transformed into Eq. (1) through the transforma-

tion

x = ζ −

∫

q(t) dt , t = τ , u(x, t) = v(ζ, τ) . (3)

Another vcKdV model with dissipative, damped and

external-force terms[23]

vτ + f(τ )vvζ + g(τ )vζζζ + l(τ )v + q(τ )vζ = h(τ ) , (4)

which governs the pulse wave propagation in blood vessels

and dynamics in the circulatory system,[6] is also equiva-

lent to Eq. (1) with the following transformation

v(ζ, τ) = e−
∫

l(t) dt

∫

e
∫

l(t) dt h(t) dt+ u(x, t) , (5)
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with

x = ζ −

∫

[

e−
∫

l(t) dtf(t)

∫

e
∫

l(t) dth(t) dt
]

dt

−

∫

q(t) dt , t = τ ,

where v(ζ, τ) satisfies Eq. (4), while u(x, t) satisfies
Eq. (1).

Reference [16] has addressed that equation (1) has the
Painlevé property only when

g(t) = f(t) e−
∫

l(t) dt
[

c1c2+c2

∫

f(t) e−
∫

l(t) dt dt
]

, (6)

where c1 and c2 are both arbitrary real constants with
c21 + c22 6= 0. Under Condition (6), we plan to construct
the auto-Bäcklund transformations for Eq. (1) through
various methods.

The rest of this paper is organized as follows. In Sec. 2,
the auto-Bäcklund transformations in two different forms
for Eq. (1) will be derived. In Sec. 3, the auto-Bäcklund
transformation for Eq. (1) will be presented through the
truncated Painlevé expansion method and the compatibil-
ity of such method will be testified. In Sec. 4, the auto-
Bäcklund transformation for Eq. (1) will be obtained by
the extended variable-coefficient balancing-act method. In

Sec. 5, the auto-Bäcklund transformation for Eq. (1) in
the accepted form will be given. Section 6 will be the
discussions and conclusions for this paper.

2 Auto-Bäcklund Transformations in Bilin-
ear and Lax Pair Forms

In this section, with the help of symbolic computa-
tion,[5,17] we will derive out the auto-Bäcklund transfor-
mations in bilinear and Lax pair forms for Eq. (1).

Introducing

u =
12 g(t)

f(t)

∂2

∂x2
ln[τ (x, t)]

directly into Eq. (1) with Condition (6), we can get the
following general variable-coefficient bilinear form

[DxDt + g(t)D4
x](τ · τ ) +

2A′(t)

A(t)
τ τx = 0 , (7)

where in the following analysis,

A(t) =
[

c1 +

∫

e−
∫

l(t)dtf(t)dt
]

and the prime sign denotes the differential with respect
to t, while DxDt and D4

x are both the bilinear operators
defined in Ref. [18] as

Dm
x D

n
t (a · b) ≡

( ∂

∂x
−

∂

∂x′

)m ( ∂

∂t
−

∂

∂t′

)n

a(x, t) b(x′, t′)

∣

∣

∣

∣

x′=x, t′=t

. (8)

Let τ1(x, t) and τ2(x, t) be two distinct solutions for Eq. (7), the following equation

P ≡ τ1
2 [DxDt + g(t)D4

x] (τ2 · τ2) − τ2
2 [DxDt + g(t)D4

x] (τ1 · τ1) +
A′(t)

A(t)
τ1

2τ2τ2, x −
A′(t)

A(t)
τ2

2τ1τ1, x = 0 , (9)

can be regarded as the auto-Bäcklund transformation for Eq. (7) in bilinear form. By virtue of the properties of bilinear
operators,[18−20] P can be transformed into

2Dx

{[

Dt+3λ(t)Dx+g(t)D3
x+

A′(t)x

2A(t)
Dx

]

(τ2·τ1)
}

·(τ1τ2)+6Dx

{[

g(t)D2
x−λ(t)−

A′(t)x

6A(t)

]

(τ2·τ1)
}

·(Dxτ1·τ2) = 0 . (10)

Accordingly, equation (10) could be split into two parts:
[

Dt + 3λ(t)Dx + g(t)D3
x +

A′(t)x

2A(t)
Dx

]

(τ2 · τ1) = 0 , (11)

[

g(t)D2
x − λ(t) −

A′(t)x

6A(t)

]

(τ2 · τ1) = 0 , (12)

which constitute the auto-Bäcklund transformation for

Eq. (1) in bilinear form, where λ(t) is an arbitrary func-

tion.

Furthermore, if we let

τ2(x, t) = τ1(x, t)Ψ(x, t) , (13)

and substitute it into Eqs. (11) and (12), the Lax pair for

Eq. (1) is derived as follows:

L = 6g(t)∂ 2
x + f(t)u1(x, t) −

A′(t)

A(t)
x , (14)

M = −
1

3

[

f(t)u1(x, t) − 2λ(t) +
2A′(t)x

A(t)

]

∂x

+
1

6

[

f(t)
∂u1(x, t)

∂x
−
A′(t)

A(t)

]

, (15)

where the operators L and M satisfy LΨ(x, t) = −λ(t)

Ψ(x, t) andMΨ(x, t) = ∂tΨ(x, t), respectively. With sym-

bolic computation, under Condition (6), it is easy to verify

that Lt − [M,L] + λ′(t) = 0 with λ(t) = c0 g(t)/A(t)2 (c0
is an arbitrary parameter). Equivalently, the Lax pair can

also be written in the form

Ψxx = −
1

6 g(t)

[

f(t)u1(x, t) −
A′(t)

A(t)
x+ λ(t)

]

Ψ , (16)

Ψt = −
1

3

[

f(t)u1(x, t) − 2λ(t) +
2A′(t)x

A(t)

]

Ψx

+
1

6

[

f(t)
∂u1(x, t)

∂ x
−
A′(t)

A(t)

]

Ψ . (17)

Since τ1(x, t) and τ2(x, t) are both solutions for Eq. (1)

in bilinear form, hereby, the following relation

u2(x, t) = u1(x, t) +
12 g(t)

f(t)

∂2

∂x2
ln[Ψ(x, t)] , (18)

can also be regarded as the auto-Bäcklund transformation
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in the Lax pair form for Eq. (1), where

ui(x, t) =
12 g(t)

f(t)

∂2

∂x2
ln[τi(x, t)] (i = 1, 2) ,

while Ψ(x, t) satisfies Eqs. (16) and (17).

3 Auto-Bäcklund Transformation Through
Truncated Painlevé Expansion Method
In this section, we will determine the auto-Bäcklund

transformation for Eq. (1) through the truncated Painlevé
expansion method.

It is known that the necessary condition for Eq. (1) to
be completely integrable is that it possesses the Painlevé

property[21] when the solutions written as

u(x, t) = φ−J (x, t)

∞
∑

i=0

ui(x, t)φ
i(x, t) , (19)

are single-valued in the neighborhood of a noncharacteris-

tic, where J is a natural number to be determined, ui(x, t)

and φ(x, t) are both analytic functions with u0(x, t) 6= 0.

According to the leading-order analysis of Eq. (1), we

obtain the truncated Painlevé expansion as

u(x, t)=u0(x, t)φ
−2(x, t)+u1(x, t)φ

−1(x, t)+u2(x, t) , (20)

which is substituted into Eq. (1), yielding

φ−5[−2f(t)u0
2φx − 24g(t)u0φx

3]

+ φ−4[f(t)u0u0, x − 3f(t)u0u1φx + 18g(t)u0, xφx
2 − 6g(t)u1φx

3 + 18g(t)u0φxφxx]

+ φ−3[−2u0φx + f(t)u1u0, x + f(t)u0u1, x − f(t)u1
2φx − 2 f(t)u0u2φx

+ 6g(t)u1, xφx
2 − 6g(t)φxu0, xx − 6g(t)u0,xφxx + 6g(t)u1φxφxx − 2g(t)u0φxxx]

+ φ−2[l(t)u0 + u0, t − u1φt + f(t)u2u0, x + f(t)u1u1, xx + f(t)u0u2, x − f(t)u1u2φx

− 3g(t)φxu1, xx − 3g(t)u1,xφxx + g(t)u0, xxx − g(t)u1φxxx]

+ φ−1[l(t)u1 + u1, t + f(t)u2u1, x + f(t)u1u2, x + g(t)u1, xxx]

+ u2, t + f(t)u2u2, x + g(t)u2, xxx + l(t)u2 = 0 . (21)

Let the coefficients of φ−5 and φ−4 in Eq. (21) be zero,

we know that

u0(x, t) =
−12g(t)

f(t)
φx

2 , u1(x, t) =
12g(t)

f(t)
φxx . (22)

Thus, the truncated Painlevé expansion (20) becomes

u(x, t) = u2(x, t) +
12g(t)

f(t)
(lnφ)xx , (23)

which constitutes the auto-Bäcklund transformation for

Eq. (1), while u2(x, t) is a solution for Eq. (1) and φ(x, t)

satisfies

φxφt + f(t)u2φx
2 − 3g(t)φxx

2 + 4g(t)φxφxxx = 0 , (24)

φxt + f(t)u2φxx + g(t)φxxxx +
A′(t)

A(t)
φx = 0 . (25)

In the following analysis, with the help of Schwarzian

derivative-scattering method,[22] we will testify the com-
patibility of Eqs. (24) and (25).

Firstly, eliminating u2(x, t) in Eqs. (24) and (25) yields

∂

∂x

[ φt

φx

+ g(t)H(x, t) +
A′(t)

A(t)
x
]

= 0 , (26)

with

H(x, t) =
{

φ : x
}

≡
∂

∂ x

(φxx

φx

)

−
1

2

(φxx

φx

)2

, (27)

where {φ : x} is called the Schwarzian derivative.[22] Inte-

grating Eq. (26) with respect to x, we have

φt

φx

+ g(t)H(x, t) +
A′(t)

A(t)
x = η0(t) , (28)

where η0(t) is an integration function of t.

Secondly, let φ(x, t) = ψ1(x, t)/ψ2(x, t) and require
ψi(x, t) (i = 1, 2) to satisfy the following scattering prob-
lem:

ψi, xx = U(x, t)ψi , (29)

ψi, t = V (x, t)ψi, x +W (x, t)ψi , (30)

where U(x, t), V (x, t), and W (x, t) are all real functions
of x and t to be determined.

Introducing φ(x, t) = ψ1(x, t)/ψ2(x, t) into Eq. (28),
we have

V − 2g(t)U +
A′(t)

A(t)
x = η0(t) . (31)

The compatibility of Eqs. (29) and (30), i.e., ψi, xxt =
ψi, txx (i = 1, 2) gives rise to

Ut = V Ux + 2U Vx +Wxx , (32)

Wx = −
1

2
Vxx . (33)

Substitution of Eqs. (31) and (33) into Eq. (32) yields

Ut = 6g(t)U Ux − g(t)Uxxx −
A′(t)

A(t)
xUx

+ η0(t)Ux − 2
A′(t)

A(t)
U . (34)

Finally, we assume

U(x, t) =
f(t)

6g(t)
u(x, t) + Y (x, t) ,

and substitute it into Eq. (34), yielding

Y (x, t) =
1

6g(t)

[A′(t)

A(t)
x+ 6η0(t)

]

, (35)
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U(x, t) = −
1

6g(t)

[

f(t)u(x, t) −
A′(t)

A(t)
x− 6η0(t)

]

, (36)

where u(x, t) satisfies Eq. (1). From Eqs. (31) and (33),

we obtain

V (x, t) = −
1

3

[

f(t)u(x, t) + 2
A′(t)

A(t)
x+ 12η0(t)

]

, (37)

W (x, t) =
1

6

[

f(t)
∂u(x, t)

∂ x
+ 2

A′(t)

A(t)

]

+ η1(t) , (38)

where η1(t) is an integration function of t.

We note that if the integration functions η0(t) =

−6λ(t) with arbitrary function λ(t) and η1(t) =

−A′(t)/2A(t), then equations (29) and (30) become

ψi, xx = −
1

6g(t)

[

f(t)u(x, t) −
A′(t)

A(t)
x+ λ(t)

]

ψi , (39)

ψi,t = −
1

3

[

f(t)u(x, t) − 2λ(t) +
2A′(t)x

A(t)

]

ψi, x

+
1

6

[

f(t)
∂u(x, t)

∂x
−
A′(t)

A(t)

]

ψi , (40)

which are just the Lax pair for Eq. (1) and identical to

Eqs. (16) and (17).

Furthermore, by choosing λ(t) = c0g(t)/A(t)2 with ar-
bitrary parameter c0 and substituting it into the Lax pair
(39) and (40) under Condition (6), we have

ψi, xxt − ψi, txx =
− e

∫

l(t) dtψi(x, t)

6 c2A(t)

×[ut+f(t)uux+g(t)uxxx+l(t)u]= 0 .(41)

Hereby, the compatibility of Eqs. (24) and (25) is testified.

4 Auto-Bäcklund Transformation Through
Extended Variable-Coefficient Balancing-
Act Method
We know that the extended variable-coefficient ba-

lancing-act method is an effective means to construct
the auto-Bäcklund transformation for a given system of
NLEEs.[3] So, utilizing such method, we can seek for the
general auto-Bäcklund transformation for Eq. (1) in the
form

u(x, t) = k(t)
∂ 2

∂x 2
F [ϕ(x, t)] + u0(x, t) , (42)

where k(t), F (ϕ), ϕ(x, t), and u0(x, t) are all differentiable
functions to be determined.

Substituting Eq. (42) into Eq. (1) yields

l(t)u0 + u0, t + f(t)u0u0, x + k(t) l(t)F ′′ϕx
2 + k′(t)F ′′ϕx

2 + k(t)F (3)ϕt ϕx
2

+ f(t)k(t)F ′′u0,xϕx
2 + f(t)k(t)u0F

(3)ϕx
3 + f(t)k(t)2F ′′F (3)ϕx

5 + g(t)k(t)F (5)ϕx
5

+ 2k(t)F ′′ϕxϕxt + k(t)l(t)F ′ϕxx + F ′k′(t)ϕxx + k(t)F ′′ϕtϕxx + f(t)k(t)F ′u0,xϕxx

+ 3f(t)k(t)u0F
′′ϕxϕxx + 3f(t)k(t)2F ′′2ϕx

3ϕxx + f(t)k(t)2F ′F (3)ϕx
3ϕxx

+ 10g(t)k(t)F (4)ϕx
3ϕxx + 3f(t)k(t)2F ′F ′′ϕxϕxx

2 + 15g(t)k(t)F (3)ϕxϕxx
2

+ k(t)F ′ϕxxt + g(t)u0,xxx + f(t)k(t)u0F
′ϕxxx + f(t)k(t)2F ′F ′′ϕx

2ϕxxx

+ 10g(t)k(t)F (3)ϕx
2ϕxxx + f(t)k(t)2F ′2ϕxxϕxxx + 10g(t)k(t)F ′′ϕxxϕxxx

+ 5g(t)k(t)F ′′ϕxϕxxxx + g(t)k(t)F ′ϕxxxxx = 0 , (43)

where k′(t) = (d/dt)k(t) and F (j) = djF [ϕ(x, t)]/dϕ j .
To simplify Eq. (43), we set the coefficient of ϕ5

x to be
zero and obtain

f(t)k(t)2 F ′′ F (3) + g(t) k(t)F (5) = 0 , (44)

which has a solution

F [ϕ(x, t)] = 12 lnϕ(x, t) ,

with

k(t) =
g(t)

f(t)
. (45)

Thus, the general auto-Bäcklund transformation (42)
becomes

u(x, t) = u0(x, t) +
12g(t)

f(t)
(lnϕ)xx , (46)

where u0(x, t) is an arbitrary solution for Eq. (1), which is
the same as truncated Painlevé expansion (23) and ϕ(x, t)
satisfies the following equations

ϕxϕt + f(t)u0ϕx
2 − 3g(t)ϕxx

2 + 4g(t)ϕxϕxxx = 0 , (47)

ϕxt + f(t)u0ϕxx + g(t)ϕxxxx +
A′(t)

A(t)
ϕx = 0 . (48)

The compatibility of Eqs. (47) and (48) under condi-
tion (6) has been testified in Sec. 3.

5 Auto-Bäcklund Transformation Expressed
as Wahlquist Estabrook (WE) Form for
Eq. (1)
In the above sections, the auto-Bäcklund transforma-

tions for Eq. (1) in various forms have been presented. In
this section, we will write the auto-Bäcklund transforma-
tion in bilinear form as the WE[24] form, i.e.,

(w2 + w1)x = Γ(w1, w2, x, t) , (49)

(w2 − w1)t = Π(w1, w2, x, t) , (50)

where wi(x, t) = ∂ ui(x, t)/∂x (i = 1, 2) satisfy the po-
tential vcKdV equation for Eq. (1), while Γ(w1, w2, x, t)
and Π(w1, w2, x, t) are both analytic functions to be de-
termined.
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In order to write the auto-Bäcklund transformation in

the WE form, we introduce the relations

τ1(x, t) = Exp
[ρ(x, t) − ξ(x, t)

2

]

, (51)

τ2(x, t) = Exp
[ρ(x, t) + ξ(x, t)

2

]

, (52)

where τ1(x, t) and τ2(x, t) are two distinct solutions of

the auto-Bäcklund transformation in bilinear form, while

ρ(x, t) and ξ(x, t) are both differentiable functions.

Substituting expressions (51) and (52) into Eqs. (11)

and (12), i.e., the auto-Bäcklund transformation in bilin-
ear form, we obtain

− λ(t) −
xA′(t)

6A(t)
+ g(t) (ρx

2 + ξxx) = 0 , (53)

− ρt − 3λ(t)ρx −
xA′(t)ρx

2A(t)

− g(t)
(

ρx
3 + 3ρxξxx + ρxxx

)

= 0 . (54)

Taking derivative of both sides in Eq. (54) with respect to
x yields

−ρxt − 3λ(t)ρxx −
A′(t)ρx

2A(t)
−
xA′(t)ρxx

2A(t)
− g(t)

(

3ρx
2ρxx + 3ρxxξxx + 3ρxξxxx + ρxxxx

)

= 0 . (55)

We know that τ1(x, t) and τ2(x, t) are two distinct solutions for Eq. (7), hereby the following equations are satisfied,

ρx =
τ2, x

τ2
−
τ1, x

τ1
=
∂lnτ2
∂ x

−
∂lnτ1
∂ x

=
f(t)

12g(t)

[

w2(x, t) − w1(x, t)
]

, (56)

ξx =
τ1, x

τ1
+
τ2, x

τ2
=
∂lnτ2
∂ x

+
∂lnτ1
∂ x

=
f(t)

12g(t)

[

w2(x, t) + w1(x, t)
]

. (57)

Substituting Eqs. (56), (57), and their derivatives into Eqs. (53) and (55), we can get the auto-Bäcklund transfor-
mation for Eq. (1) in the WE form below

(w2 + w1)x = −
f(t)

12g(t)

(

w2 − w1

)2

+
2A′(t)x

A(t) f(t)
+

12λ(t)

f(t)
, (58)

(w2 − w1)t = −
[ A′(t)

2A(t)
+

6g(t)A′(t)

A(t) f(t)

]

(w2 − w1) +
[f(t)

2
−

f(t)2

48g(t)

]

(w2 − w1)
2 (w2 − w1)x

−
[

3λ(t) +
A′(t)x

2A(t)

]

(w2 − w1)x −
f(t)

4
(w2

2, x − w2
1, x) − g(t) (w2, xxx − w1, xxx) , (59)

where equations (58) and (59) equate with the “space”
part and “time” part, respectively.

6 Discussions and Conclusions

The vcKdV models with additional terms, i.e.,
Eqs. (1), (2), and (4), have been widely used in physi-
cal and engineering sciences. For instance, those mod-
els can describe the trapped quasi-one-dimensional Bose–
Einstein condensates, water waves in a channel with an
uneven bottom and/or deformed walls, nonlinear excita-
tions of a Bose gas of impenetrable bosons with longitudi-
nal confinement, dynamics of a circular rod composed of
a general compressible hyperelastic material with variable
cross-sections and material density, propagation of weakly
nonlinear solitary waves in a varied-depth shallow-water
tunnel. In the above sections, by using Mathematica, the
auto-Bäcklund transformations in different forms for the
damped vcKdV model have been obtained through vari-
ous methods.

The discussions and conclusions of this paper are as
follows.

(i) Without any constraint condition, some other
vcKdV models are shown to be transformable into the
damped vcKdV equation, e.g., Eqs. (2) and (4). Hereby,
the above different expressions of auto-Bäcklund trans-
formations for Eq. (1) can be mapped to Eqs. (2)

and (4) respectively through Transformations (3) and (5).
Meanwhile, the Painlevé-integrable conditions of Eqs. (2)
and (4) are the same as Condition (6).

(ii) Different from the classical auto-Bäcklund trans-
formation for constant-coefficient KdV model[18] and the
one in bilinear form presented in Ref. [25] for vcKdV mod-
els under Condition (6) with c2 = 0, the obtained auto-
Bäcklund transformations in various forms in this paper
include arbitrary functions of t, as seen in Eqs. (11), (12),
(58), and (59).

(iii) In Secs. 3 and 4, through the truncated Painlevé
expansion method and extended variable-coefficient ba-
lancing-act method, we derive the auto-Bäcklund trans-
formation for Eq. (1). It is found that the results via the
two methods are in accord with each other. The primary
reason is that balancing f(t)uux with g(t)uxxx in Eq. (1)
leads to F [ϕ(x, t)] being a logarithmic-type function in the
extended variable-coefficient balancing-act method, which
makes Eq. (42) have the same form as Eq. (23). Mean-
while, the compatibility of Eqs. (24) and (25) (or equiv-
alent Eqs. (47) and (48)) has been testified through the
Schwarzian derivative-scattering method and Lax equa-
tion firstly.

(iv) As we know, the above auto-Bäcklund transfor-
mations in different forms for Eq. (1) are based on the
Painlevé-integrable condition. In addition, many other
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remarkable properties such as the N -soliton (or N -soliton-
like) solution, Wronskian expression, nonlinear superposi-
tion formula, Lax pair and Darboux transformation can
also be constructed under this integrable condition. Phys-
ically speaking, the Painlevé-integrable condition for a
certain vcKdV model should be detailed as the suitable
dynamical conditions as depicted in Ref. [23].
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