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Abstract In order to describe the self-organization of communities in the evolution of weighted networks, we propose a

new evolving model for weighted community-structured networks with the preferential mechanisms functioned in different

levels according to community sizes and node strengths, respectively. Theoretical analyses and numerical simulations

show that our model captures power-law distributions of community sizes, node strengths, and link weights, with tunable

exponents of ν ≥ 1, γ > 2, and α > 2, respectively, sharing large clustering coefficients and scaling clustering spectra,

and covering the range from disassortative networks to assortative networks. Finally, we apply our new model to the

scientific co-authorship networks with both their weighted and unweighted datasets to verify its effectiveness.
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1 Introduction
It is widely recognized that many real-world large-

scale networking systems exhibit common nontrivial
connectivity patterns including the typical small-world
phenomenon[1] and scale-free features,[2] which sig-
nificantly dominate the emergent dynamics over the
networks.[3] With the deeper understanding of interplay
between the topology and dynamics of complex networks,
people find many building blocks or units with a group
of closely connected nodes, the so-called communities in
social networks or modules in biological networks, play an
important role in forming the topological properties and
functional dynamics of involved complex networks.[4−7]

With further researches, several important proper-
ties are exposed in those community-structured networks.
First and the most fundamental one is the connections
between nodes are very dense in communities while much
sparser between them,[8] which is believed to be caused
by the tendency of communication within same commu-
nity. For example, in world trade web (WTW), it was
found that many countries (nodes in WTW) have trading
preference inside the same regional economic cooperative
organization, such as EU, ASEAN, and NAFTA (com-
munities in WTW), where the local-world preferential at-
tachment mechanism[5] leads to a stronger correlation of
economic-cycle synchronization between countries in the
same economic organization (Austria and Germany, both
in the EU) than that between countries in different eco-
nomic organizations (Austria and USA).[6]

Another property of communities in categories of com-
plex networks is that the size distribution of communities
often follows a power-law,[9,10] which is considered as the
scale-invariant feature of complex networks reflected in the
community level. And it is also argued that the presence
of communities (or modules) is the essential signature of
hierarchy in complex networks.[11]

To mimic these topological properties of community
structures in complex networks, many evolving mod-
els have been proposed in the sense of communities
and modules.[12−17] For example, the networked seceder
model was proposed to construct community structured
networks emerged as an effect of the agents personal
rationales.[12] An evolving model by merging building

blocks, which are fully connected subgraphs, was proposed
with power-law degree distribution of exponent larger
than 1, power-law clustering spectra of exponent 1, and
high clustering coefficient.[13] Owning to the power-law de-
gree distribution of fixed exponent 3, an evolving network
model with inner-community preferential attachment was
built.[14] Xuan, Li, and Wu proposed a model for hier-
archical and modular networks,[15] in which the power-
law distribution of module sizes is derived by a predefined
structure. Furthermore, Valverde and Sole presented a
simple model of open source communities based on the
betweenness centrality.[16]

However, almost all of these models neglected the
growing rules of communities, and seldom took into
account the preferential mechanism on the community
level.[18] Therefore, they failed to explain the phenomenon
that many real-world networks show the power-law scal-
ing property of community sizes with exponents between 1
and 2.[9,10] Besides, extended from the Boolean structure
of unweighted networks, which are taken into account by
most of these models, weighted networks took a step for-
ward to understanding real-world complex networks more
realistically, whose links between nodes display hetero-
geneity in the capacity and intensity.[19−21] Therefore, in
the new model proposed in this paper, we develop the
preferential mechanism not only on node strengths, but
also at the level of community in weighted evolving net-
works, exhibiting power-law distributed community sizes
as well as nodes strengths and link weights with the scale
invariant exponents ν ≥ 1, γ > 2, and α > 2, respec-
tively. Furthermore, the effectiveness of the model is ver-
ified through an example of social networks, the scientific
co-authorship networks.

2 The Model

Owing to the community structure in our model,
we divide the links of each node into two parts: the
inner-community links, which are the links connecting to
other nodes within the same community, and the inter-
community links, which are the links connecting to the
nodes in different communities.
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We initialize an undirected weighted network with c0
(c0 > 1) communities, each of which has n0 fully con-
nected nodes. There are c0(c0 − 1)/2 inter-community
links to make the initialized c0 communities fully con-
nected. Every link connecting node i and node j in
the initialized network is assigned the same initial weight
wij = ω0 = 1. Naturally, as the generalization of de-
gree ki of node i, the strength of node i is defined as
bi =

∑

j∈Γ(i)

wij , where Γ(i) denotes the neighbor set of

node i. Therefore, the strength of every node is initialized
the same as its degree.

Different from previous community models, we first
propose two preferential attachment (PA) rules in the
model:

i) Community size preferential attachment (CPA):
When a new node chooses an existing community to join
(or chooses another community from which to get an inter-
community neighbor), we assume the probability of choos-
ing community i, Π(Si), depends on the size of community
i, Si, such that

Π(Si) =
Si

∑

k Sk
. (1)

ii) Strength preferential attachment (SPA): When
choosing a new neighbor, a new node firstly chooses a
community i according to the CPA, and then connects

with one node in it with the SPA. We assume the proba-
bility that the new node connects to node j in community
i, Π(Bij), is described by

Π(Bij) =
Bij

∑

k Bik
, (2)

where Bij stands for the strength of node j in community
i.

Apart from the above preferential attachment mecha-
nisms at different levels, another point accounted in our
model is that real-world networks usually have large clus-
tering coefficients, indicating that many triangles exist in
networks. To show this, we introduce the triad-formation
(TF) links[22] in our model. Therefore, during the net-
work growing process, we employ two categories of links
driven by different mechanisms in our model: (i) the PA
links, which adopt the SPA mechanism to select connected
nodes as in many evolving models; (ii) the TF links func-
tioning as the formation of triads in the evolving weighted
network, which means if node j is chosen by the new com-
ing node t last time, one of the neighbors of node j will be
selected to be the neighbor of node t. The probability of
choosing node l is wjl/Bij , where wjl stands for the link
weight between node j and node l.

Combined with the PA mechanisms and links cate-
gories addressed above, the network growth of our pro-
posed model is schemed as follows, with the illustration in
Fig. 1.

Fig. 1 An illustration of the network growth of our model. (a) A network is intialized with three communities, each of
which has four fully connected nodes; (b) With probability p, a new community with four fully connected nodes is created.
One node in that community connects to three existing nodes in other communities. The first and second links are PA links
with probability 1 − ϕ. For the third link, a TF link is added with probability ϕ; (c) A new node with three links joins an
existing community according to the CPA. The first link is a PA link, and also an inner-community link with probability q.
With probability ϕ, the second link is a TF link. Then with another probability 1−ϕ, the third link is added as a PA link,
which is also an inter-community link with probability 1 − ϕ.

At each time-step, a new community containing n0
fully connected nodes is added with probability p. In that
community, every link is assigned the same initial weight
ω0 = 1, and one node is chosen at random to connect with
m existing nodes in other communities. For that node, the
first link is a PA link, while the other m − 1 links are TF
links with probability ϕ or PA links with probability 1−ϕ.

On the other hand, a new node is added with prob-
ability 1 − p. At first, it chooses a community to join
according to the CPA rule (i), and then it connects with
m existing nodes in the network. Similairly, the first link
is a PA link, while the others are TF links with probabil-
ity ϕ or PA links with probability 1 − ϕ. For those PA
links, they are inner-community links with probability q
or inter-community link with probability 1 − q. All these
links are assigned the same initial weight ω0 = 1.

Please note that when a new node chooses an inter-

community neighbor, it firstly chooses a community ac-
cording to the CPA (1), and then chooses one node from
that community according to the SPA (ii).

Here, the probabilities satisfy 0 ≤ p ≤ 1, 0 ≤ q ≤ 1,
and 0 ≤ ϕ ≤ 1.

To rearrange the weights during the network evolu-
tion, similar to the BBV model,[19] the birth of a new link
l(n, j) brings in a new information traffic from node n to
node j, resulting in a local rearrangement of weights across
the network. In particular, the weight of each new edge
l(n, j) is initialized as ω0 = 1, which induces an extra
increase of traffic δ to node j in community i. There-
fore, the total strength increase of node j is δ + ω0, i.e.,
Bij → Bij + δ + ω0. Furthermore, δ is proportionally dis-
tributed among node j’s outgoing edges, whose weights
are updated as wjl → wjl+∆wjl, where ∆wjl = δwjl/Bij ,
l ∈ Γ(j).
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3 Property Analysis

3.1 Scale-Invariant Distributions

Using the mean-field method,[2] we analytically calcu-
lated the scaling exponents of the community sizes, node
strengths, node degrees, and link weights in our proposed
evolving weighted network model.

In our model, when a new node joins an existing com-
munity, it follows the preferential attachment in Eq. (1).
Assume the sizes of communities are continuous. There-
fore, the size preferential probability can be interpreted as
a continuous rate of the change of Si. Consequently, for
community i, we have

∂Si

∂t
=

Si
∑

k Sk
. (3)

Since
∑

k Sk = N , then

∂Si

∂t
=

Si
∑

k Sk
=

Si

N
=

Si

c0n0 + (1 − p + p · n0)t

≈
Si

(1 − p + p · n0)t
, (4)

whose solution, with initial condition that community i
was added to network at time ti with size Si = n0, is

Sit) = no

(

t/ti
)1/(1−p+p·n0)

, (5)

Therefore, the probability that a community has a size
Si(t) no less than s, P (Si(t) ≥ s), is

P (Si(t) ≥ s) = P
(

ti ≤
n1−p+p·n0

0

s1−p+p·n0

t
)

. (6)

For simplicity, we assume that communities are added
at equal time intervals to the network. Hence, the proba-
bility density of ti is

P (ti) =
1

c0 + pt
. (7)

Substituting Eq. (7) into Eq. (6), we obtain

P (Si(t) ≥ s) = P
(

ti ≤
n1−p+p·n0

0

s1−p+p·n0

t
)

=
n1−p+p·n0

0

s1−p+p·n0

1

c0 + p · t
. (8)

It implies that the cumulative distribution of commu-
nity sizes obeys a power-law, P (S ≥ s) ∼ s−ν , with the
exponent ν = 1 + p(n0 − 1) ≥ 1, which succeeds to mimic
the phenomenon of scale-free community size distributions
having the scaling exponent ν ∈ [1, 2] as discovered in
many real-world networks.[9,10]

We now move to analyze the distributions of node
strengths, node degrees, and link weights. As men-
tioned before, the links of each node can be divided
into two parts: the inner-community links and the inter-
community links. The inter-community links are gener-
ated from two ways. On one hand, when a community is
added with probability p, it brings in m inter-community
links. On the other hand, the m links of a new node are in-
troduced as inter-community links with probability 1− q.
Generally, in real networks, links between communities
are much sparser than those within communities,[8] thus
we suppose the number of links of node j in community i,
which is equal to its degree Kij , is approximatively equal
to that of its inner-community links marked as Kij(inner).
That is, Kij ≈ Kij(inner).

First, let us take a look at the distribution of node
strengths. When a new node n is created, the strength
Bij of the existing node j in community will be affected
in four cases. (i) It is selected by node n according to
the SPA; (ii) It is connected to node n with the TF links;
(iii) One of its neighbor l ∈ Γ(j) is selected by node n
according to the SPA; (iv) One of its neighbor l ∈ Γ(j) is
connected to node n with the TF links. We suppose the
number of TF links is mtriad. Thus, the total change rate
of strength for node j in community i is

∂Bij

∂t
= (m − mtriad)

Si
∑

k Sk

Bij
∑

k Bik
(1 + δ) +

∑

l∈Γ(j)

Sv
∑

k Sk

Bvl
∑

w Bvw
mtriad

wjl

Bvl
(1 + δ)

+
∑

l∈Γ(j)

(m − mtriad)
Sv

∑

k Sk

Bvl
∑

w Bvw
δ
wjl

Bvl
+

∑

l∈Γ(j)





[

∑

u∈Γ(l)

Sv
∑

k Sk

Bvu
∑

w Bvw
mtriad

wul

Bvu

]

δ
wjl

Bvl





= (m − mtriad)
Si

N

Bij

2m(1 + δ)Si
(1 + δ) +

∑

l∈Γ(j)

Sv

N

Bvl

2m(1 + δ)Sv
mtriad

wjl

Bvl
(1 + δ)

+
∑

l∈Γ(j)

(m − mtriad)
Sv

N

Bvl

2m(1 + δ)Sv
δ
wjl

Bvl
+

∑

l∈Γ(j)





[

∑

u∈Γ(l)

Sw

N

Bwu

2m(1 + δ)Sw
mtriad

wul

Bwu

]

δ
wjl

Bvl





=
m − mtriad

2mN
Bij +

mtriad

2mN
Bij +

(m − mtriad)δ

2m(1 + δ)N
Bij +

δmtriad

2m(1 + δ)N
Bij =

1 + 2δ

2N(1 + δ)
Bij . (9)

On the other hand, the degree of node j will be affected only in the cases of (i) and (ii), thus, we can calculate the
change rate of degree for node j in community i as
∂Kij

∂t
= (m − mtriad)

Si
∑

k Sk

Bij
∑

k Bik
+

∑

l∈Γ(j)

Sv
∑

k Sk

Bvl
∑

w Bvw
mtriad

wjl

Bvl
=

m − mtriad

2m(1 + δ)N
Bij +

mtriad

2m(1 + δ)N
Bij

=
Bij

2(1 + δ)N
, (10)
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Moreover, since N = c0n0 + (1 − p + pn0)t ≈ (1 − p +
pn0)t, we have

∂Bij

∂t
=

1 + 2δ

2(1 + δ)(1 − p + pn0)t
Bij , (11)

∂Kij

∂t
=

Bij

2(1 + δ)(1 − p + pn0)t
, (12)

respectively, whose solutions with the initial condition
that node j was added to community i at time tj with
m links, Kij(tj) = Bij(tj) = m, are

Bij(t) = m
( t

ti

)(2δ+1)/2(δ+1)(1−p+pn0)

, (13)

Kij(t) =
Bij(t) + 2mδ

2δ + 1
, (14)

respectively. Moreover, there is a linear relationship be-
tween them. Therefore, the node degrees and node
strengths follow the same form of power-law distribu-
tions P (k) ∼ k−γ and P (B) ∼ B−γ , where γ =
4δ + 3 + 2p(δ + 1)(n0 − 1)/(2δ + 1) > 2.

Besides, for an existing link (j, s), its weight wjs will
change if a new node connects to either node j or node s.
Hence,

∂wjs

∂t
= (m − mtriad)

Si
∑

k Sk
t

Bij
∑

k Bik
tδ

wjs

Bij
+ (m − mtriad)

Sr
∑

k Sk

Brs
∑

v Brv
δ
wjs

Brs

+ mtriad

∑

u∈Γ(j)

Sv
∑

k Sk

Bvu
∑

w Bvw

wju

Bvu
δ
wjs

Bij
+ mtriad

∑

u∈Γ(s)

Sv
∑

k Sk

Bvu
∑

w Bvw

wsu

Bvu
δ
wjs

Brs

= (m − mtriad)
δwjs

2mN(1 + δ)
+ (m − mtriad)

δwjs

2mN(1 + δ)
+ mtriad

δwjs

2mN(1 + δ)
+ mtriad

δwjs

2mN(1 + δ)

=
δwjs

(1 + δ)N
=

δwjs

(1 + δ)(1 − p + p · n0)t
. (15)

The solution of Eq. (15) with initial condition link
(j, s) added at tjs = max(tj , ts) with wij(tjs) = w0 = 1,
is

wjs(t) =
(

t/tjs

)δ/(1+δ)(1−p+pn0)
, (16)

which implies the power-law distribution of link weights
as P (w) ∼ w−α, where

α = 2 + p(n0 − 1) + [1 + p(n0 − 1)]/δ > 2 .

3.2 Clustering and Assortative Mixing Patterns

Having the triad-formation mechanism in our model,

we now investigate the clustering property along with the
assortative mixing patterns in the evolved networks. As
shown in Fig. 2, we come to the conclusion that the av-
erage clustering coefficient C increases as the growth of
δ and ϕ. Furthermore, compared with δ, ϕ plays a more
important role in adjusting C since we can get a very wide
range of C by changing ϕ, even for a quite small δ. We
suppose it is because that the increase of δ tends to in-
crease the clustering coefficients in a local area, while the
increase of ϕ will cause the increase of clustering coeffi-
cients globally for all nodes.

Fig. 2 The comparison of the weighted SCN (2001) and our
model.

Fig. 3 The variation of r under different p, δ, and ϕ. The
initial condition and other related parameters are c0 = 3,
n0 = 3, q = 0.9, m = 4, and T = 10 000.

We then observe the influences of different parameters
to assortative mixing coefficient r[23] defined as

r =
M−1

∑

i jiki − [M−1
∑

i (ji + ki)/2]2

M−1
∑

i (j2
i + k2

i )/2 − [M−1
∑

i (ji + ki)/2]2
, (17)

where ji and ki are the degrees of the nodes at the ends of
the i-th edge, with i = 1, 2, . . . , M , and M is the number of
links in the network. In Fig. 3, we shows the relationship
between r and p with δ = 1.0 and ϕ = 0.1. The top inset
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shows the relationship between r and ϕ with p = 0.1 and
δ = 1.0. The below inset shows the relationship between
r and δ with p = 0.1 and ϕ = 0.1. All curves are averaged
from 50 groups of realizations. As shown in Fig. 3, we
could see that r grows as p increases, covering the range
of both assortative and disassortative networks. Further-
more, as ϕ and δ increases, r decreases within a relative
smaller range; however, they do not change the assortative
mixing patterns of the networks. Therefore, we believe
that the probability p of adding new community/node sig-
nificantly determines the degree-degree mixing patterns of
the evolving weighted networks in our model. This phe-
nomenon can be easily understood since the community
structure of networks is supposed to be related to the hi-
erarchy property in networks.[11]

4 Application to SCN
To verify the effectiveness of our model, in this section,

we apply it to real data of a typical social complex net-
work, the scientific co-authorship network (SCN) of the
Los Alamos cond-mat e-print archive collected in 2001.[20]

In the SCN, nodes are defined as scientists, and two scien-
tists (nodes) are connected if they have coauthored at least
one paper in this archive. Furthermore, an article with n

authors contributes (n − 1)−1 to the weight of the links
between every pair of its authors. The communities of the
largest giant component of the SCN, which is regarded
as the SCN for simplicity without loss of generality, are
analyzed by the CNM method, yielding 176 communities
with the largest modularity Q.[9] We initialized our model
with c0 = 5, n0 = 5, p = 0.015, q = 0.9, ϕ = 1, ω0 = 0.5,
δ = 0.5, and m = 3. Here p is small since the born of new
communities is much rarer than the creation of new nodes,
which is very common in real networks. After T = 13 162
steps, we gained a weighted network with the same num-
ber of nodes in SCN. As listed in Table 1 and shown
in Fig. 4, even having less links, the network generated
with our model owns very close clustering coefficient and
community number compared to the SCN in 2001, whose
distributions of community sizes, weights, and clustering
coefficients are almost completely overlapped. Thus, we
come to the conclusion that the network generated by our
model matches the SCN well. Specially, the communi-
ties defined in our model are consistent with those in real
networks. One thing we have to state is that we neglect
i-th SCN, owing to the fact that the distribution of node
strength in the SCN does not follow a power-law, which
is beyond our consideration.

Table 1 The comparison of the weighted SCN (2001) and our model.

Node number Link number Average clustering coefficient Community number

SCN (2001) 13 861 44 619 0.65 176

Our model 13 861 41 229 0.64 174

Relative error 0 7.6% 1.5% 1.1%

Table 2 The comparions of the unweighted SCN (2004) and our model.

Node number Link number Average clustering coefficient Community number

SCN (2004) 30 561 125 959 0.63 1069

Model 30 561 116 944 0.62 1058

Relative error 0 7.2% 1.6% 1.0%

The comparison of the network generated by our model and the weighted SCN in 2001. (a) Cumulative distribution
of community sizes; (b) Distribution of weights; (c) Clustering spectra.

Fig. 4 The comparison of the network generated by our model and the weighted SCN in 2001; (a) Comulative distri-
bution of community sizes; (b) Distribution of weights; (c) Clustering spectra.

Specially, if we set the parameter δ = 0, our model can also be applied to unweighted networks. For example, we
compare our model with the unweighted SCN network data collected in February, 2004.[24] After initializing our model
with c0 = 3, n0 = 3, p = 0.04, q = 0.9, ϕ = 1, δ = 0, m = 4 and after T = 28 344 steps, we gained an unweighted
network with the same number of nodes as that of the SCN in 2004. Similarly, our model succeeded in capturing
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the scale-invariant properties of community sizes, node degrees and clustering spectra of the SCN in 2004, as listed in
Table 2 and Fig. 5.

Fig. 5 The comparison of the unweighted network generated by our model and the unweighted SCN in 2004. (a)
Cumulative distribution of community size; (b) Distribution of node degrees; (c) Clustering spectra.

5 Conclusions
To summarize, with the preference mechanisms on both the community level and the node level, we have proposed

a weighted evolving network model with the self-organized community structure, displaying power-law distributions of
community sizes, node strengths, and link weights with arbitrary scaling exponents of v ≥ 1, γ > 2, α > 2, respectively,
which is qualified to model the scientific co-authorship network in both the weighted and the unweighted datasets of
2001 and 2004.

In Ref. [21], a generalized weighted evolving netwrok model was built in the concept of local-world,[5] where the
preferential mechanism only functions in the local-world, not globally. However, the size of local-worlds, to which every
node belongs, is fixed as the same, and naturally the hierarchy of community structure is neglected. Therefore, as this
paper come to the end, we think that the evolving weighted netwrok model with self-organized community structures
proposed in this paper is a generalization of the fixed local-worlds in Ref. [21] to self-organized local-worlds in ths sense
of community in social complex networks.
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