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Criticality in Two-Variable Earthquake Model on a Random Graph
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Abstract A two-variable earthquake model on a quenched random graph is established here. It can be seen as
a generalization of the OFC models. We numerically study the critical behavior of the model when the system is
nonconservative: the result indicates that the model exhibits self-organized criticality deep within the nonconservative
regime. The probability distribution for avalanche size obeys finite size scaling. We compare our model with the model
introduced by Stefano Lise and Maya Paczuski [Phys. Rev. Lett. 88 (2002) 228301], it is proved that they are not in
the same universality class.
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1 Introduction

The idea of self-organized criticality (SOC) was intro-

duced by Bak and his co-workers in 1987,[1] as an attempt

to explain the appearance of scale invariance in nature.

Several typical types of models of self-organized criticality

exist, such as sand-pile model,[2−4] forest-fire model,[5,6]

earthquake model,[7,8] and so on. The majority of these

simulations has been limited to conservative models in

early times. But recently, there are more and more ev-

idences indicating that some nonconservative earthquake

models also display SOC.[9−13]

Earthquakes may be the most dramatic example of

SOC that can be seen on earth. Most of the time, the

crust of the earth is at rest, or quiescent. These periods of

stasis are punctuated by sudden, thus far unpredictable,

bursts or earthquake.[14]

In 1992, Olami, Feder, and Christensen proposed a

simplified dissipative earthquake model (OFC model) on a

two-dimensional regular square lattice,[7] where the OFC

model displays criticality. Later, OFC model has been

applied to some other networks. For example, Lise and

Paczuski have proposed the OFC model on quenched ran-

dom graph,[9] which displays criticality deep within the

nonconservative regime; the earthquake model on small

world networks also has been investigated,[10,11] and it

displays criticality under some conditions; Hergarten and

Neugebauer have studied the two-variable model on a two-

dimensional regular square lattice,[12] C.J. Boulter and G.

Miller have extended this model and proved that it dis-

plays criticality, even when the parameter measuring the

level of dissipation equals 0 if sufficiently large systems are

considered.[13] Although both the analytical and numeri-

cal evidence above in favor of criticality are quite convinc-

ing, the role played in these models by the nonconservative

dynamics is still not clear. There are still many debates

on it.[14,15]

2 Model

The purpose of this paper is to investigate the criti-

cality of the two-variable model on a quenched random

graph.

The quenched random graph is defined as a set of

N sites connected by bonds randomly. Two connected

sites are denoted as “nearest neighbor”. The number of

the nearest neighbors of every site is the same q (self-

connections and duplicate edges are excluded).

The dynamical process of our model is as follows.

(i) With each site of the network are associated two

variables ui and wi, the conservative variables are rep-

resented by ui, while the nonconservative variables are

represented by wi. Initially, the two variables are chosen

randomly from a uniform distribution between 0 and 1.

(ii) All the forces are increased uniformly and simulta-

neously at the same speed. This continues until at some

site the energy reaches the threshold uiwi = 1, at which

point an avalanche is initiated. The supercritical site re-

laxes according to

uneigh = uneigh +
1

q
ui , ui → 0 , wi → ewi , (1)

where neigh denotes the nearest neighbor site of i. In this

paper, we choose q = 4 and q = 6. The variable wi is

not redistributed during the toppling, and the parameter

ε, which is assumed to be in the range 0 ≤ ε < 1, mea-

sures the level of dissipation. If ε = 1, both ui and wi are

conservative during the toppling; conversely, if ε < 1, the

toppling rule is dissipative in the variable wi.

∗Corresponding author, E-mail: sunfan@nuaa.edu.cn



418 SUN Fan and ZHANG Duan-Ming Vol. 50

(iii) Repeat Step (ii) until all sites of the network are

stable. The sequence of the toppling of the unstable sites

forms an avalanche. Define this process as one avalanche,

the number of topplings during an earthquake defines its

size s.

(iv) Begin Step (ii) again and another new avalanche

begins.

In order to observe scaling in the avalanche distribu-

tion, the inhomogeneities must be introduced.[9] On the

lattice, there is no critical behavior if the periodic bound-

ary conditions are applied,[16−18] this is generally achieved

by considering open boundary conditions, which imply

that boundary sites have fewer nearest neighbors.

Inhomogeneities induce partial synchronization of the

elements of the system building up long range spatial cor-

relations and thereby creating a critical state. The mech-

anism of synchronization requires an underlying spatial

structure and therefore cannot operate in an annealed RN

model,[9] where each site is assigned new random neigh-

bors at each update. It suffices to consider just two sites in

the system with coordination q − 1 on the random graph.

3 Simulations and Results

After a sufficiently long transient time, the system set-

tles into a statistically stationary state. The size of an

avalanche can be defined in several ways: the number

of topplings s, the avalanche time duration t, and the

avalanche area a. Here we mainly concentrate on the

nonconservative case. We focus on the probability dis-

tribution of earthquake sizes, s in a system of size N ,

P (s, N). At first, we report the probability distribution

of avalanche sizes with parameter ε = 0.2 for different sys-

tem sizes. The statistics are collected in the critical state

for 106 non-zero avalanches for each system size. From

Fig. 1, we can see that the distribution scales with system

size, which is indicative of a critical state. In fact, the

largest avalanche roughly coincides with system size.

Fig. 1 Log-log plot of the probability distribution
P (s, N) for the number of nearest neighbor sites q = 4,
the parameter ε = 0.2 with different system sizes (from
left to right, the system sizes N = 1000, 4000, 16000).
The data have been binned over exponentially increasing
sizes with base 1.1.

In order to characterize the critical behavior of the

model, a finite size scaling (FSS) ansatz is used.

P (s, N) ≈ N−βf
s

ND
, (2)

where f is a so-called universal scaling function, β and D

are critical exponents describing the scaling of the distri-

bution function. The critical exponent D expresses how

the finite-size cutoff scales with the system size, while

the critical exponent β is related to the normalization (or

rather renormalization) of the distribution function.

As shown in Fig. 2, an FSS collapse of P (s, N) for

different q is shown. We can see that the probability dis-

tribution P (s, N) satisfies the FSS hypothesis reasonably

well. The critical exponents derived from the fit of Fig. 2

are β = 1.71, D = 1. The FSS hypothesis implies that,

for asymptotically large N , the value of the exponent is

τ = β/D ≈ 1.71. It is different from the one for the

quenched random graph model (τ = 1.65).

Fig. 2 Data collapse analysis of the case with the
parameterε = 0.2, the number of nearest neighbors q = 4
(a) and q = 6 (b) with different system sizes. The critical
exponents are β = 1.71 and D = 1. For visual clarity,
curves (b) have been shifted along the x axis.

It is verified that the statistical properties of the sys-

tem are independent of the actual realization of the ran-

dom graph, as long as the coordination number q is the

same.[9] And it is also a strong evidence of universality for

all dissipative choices of ε.

We now discuss the time properties of the avalanches.

In Fig. 3 we report the average size of an avalanche stop-

ping at time t, 〈s〉t, as a function of the rescaled time

t̄ = t + 10 (as we are mainly interested at large values of

t, the constant should be irrelevant). We have studied the

relationship between the time t and the average size of

the avalanche stopping at time t for different parameter ε,

the result indicates that the distribution between the two

variables obeys a power-law behavior, and the straight line

of the two curves (a) and (b) in Fig. 3 is in parallel. The

curves for different system sizes overlap (deviations can
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be attributed to finite-size effects) and we observe that

〈s〉t ≈ tγ , where γ ≈ 1.8, providing further evidence of

criticality in the nonconservative system. But it is differ-

ent from the one for the quenched random graph model

(γ = 2.1), this also indicates that the two models are not

in the same universality class.

Fig. 3 Average size of an avalanche lasting t time steps
as a function of t for the number of nearest neighbors
q = 4, the parameter ε = 0.2 (a) ε = 0.8 (b) respec-
tively. Different curves correspond, from bottom to top,
to system sizes N = 1000, 4000, 16000. For visual clarity,
curves (b) have been shifted along the x axis. The slope
of the straight line is γ = 1.8.

Fig. 4 Probability distributions of values u/um from
simulations with N = 1000.

In order to understand the model better we investi-

gate the distributions of the variables . We have simulated

the distributions of the variable ui with different param-

eters respectively. It seems that the distributions of the

variable ui with different parameter ε obey some laws in

Fig. 4, it is clear that the distributions of the variable

with different parameter ε are almost the same, with sev-

eral significant peaks, and we further measure the peaks

at u/um ≈ 0, 1/4, 1/2, 3/4, where um is the maximum

u value measured across the system, i.e., the parameter ε

does not affect the distribution of variable u in the system.

When the system settles into a stationary state, almost

every site has already toppled, during an avalanche, the

toppling sites always take a u value that approximately

equals um. Furthermore, the driving phase between two

avalanches has little effect on the distribution of u. So,

we can see that the system organizes in such a way that

all sites take a u value that is approximately an integer

multiple of um/4. We think it is still the evidence of uni-

versality for all dissipative choices of ε. This is different

with the two-variable model on square lattice.

We have also simulated the distribution of variable wi,

but it seems disorderly and unsystematic, and it is com-

plicated to explain the distribution.

4 Conclusions

In this paper, we have presented a generalized two-

variable earthquake model based on a quenched random

graph, on which every site has the same number nearest

neighbors q with two sites whose number of nearest neigh-

bors is q − 1. The introduction of the inhomogeneities in

our model is the necessary condition that the system can

reach critical state.

The probability distribution P (s, N) displays power-

law behavior, and P (s, N) satisfies the FSS hypothesis

when the system is nonconservative. This is the same as

the quenched random graph model, but they have differ-

ent critical behavior, that is to say, they are not in the

same universality class. It seems that the toppling mech-

anism of the system has affected the critical behavior of

the system. Contrarily, the different spatial topology does

not alter the critical behavior of the system.

We have also studied the time properties of the

avalanches, and the distribution of variable ui. A power

law relation between the size and the duration of an

avalanche exists. The distributions of variable ui have sev-

eral significant peaks, and the locations of the peaks are

almost the same, having no relations with the parameter.

Both of them provide a strong evidence that the model is

critical and universality for all dissipative choices of ε.

We also compared the critical behavior of our model

with different number of nearest neighbors. It is shown

that different spatial topology does not alter the critical

behavior of the system.
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