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Abstract Invariant operator method for discrete or continuous spectrum eigenvalue and unitary transformation
approach are employed to study the two-dimensional time-dependent Pauli equation in presence of the Aharonov–Bohm
effect (AB) and external scalar potential. For the spin particles the problem with the magnetic field is that it introduces
a singularity into wave equation at the origin. A physical motivation is to replace the zero radius flux tube by one of
radius R, with the additional condition that the magnetic field be confined to the surface of the tube, and then taking
the limit R → 0 at the end of the computations. We point that the invariant operator must contain the step function
θ(r − R). Consequently, the problem becomes more complicated. In order to avoid this difficulty, we replace the radius
R by ρ(t)R, where ρ(t) is a positive time-dependent function. Then at the end of calculations we take the limit R → 0.
The qualitative properties for the invariant operator spectrum are described separately for the different values of the
parameter C appearing in the nonlinear auxiliary equation satisfied by ρ(t), i.e., C > 0, C = 0, and C < 0. Following
the C’s values the spectrum of quantum states is discrete (C > 0) or continuous (C ≤ 0).
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1 Introduction

The scattering of charged particles by an infinitely long

straight solenoid that encloses a magnetic flux known as

the Aharonov–Bohm effect,[1] is of paramount interest in

quantum physics. Even though the region containing the

magnetic field is inaccessible to the particles, the mag-

netic flux inside the solenoid affects their propagation.

The observed interference pattern cannot be explained

within classical physics; it is a purely quantal effect, with-

out classical correspondence. This fact differentiates the

Aharonov–Bohm (AB) effect from other important pro-

cesses, such as Rutherford scattering. The AB effect has

been analyzed by many different approaches.[2−11] The

scattering of an electron beam by a magnetic field ex-

isting in a region is restricted to the simplest situation of

a straight filiform solenoid with constant magnetic flux ν.

The main part of the original AB paper[1] consisted

of a calculation using a nonrelativistic spinless wave equa-

tion (i.e. Schrödinger equation). However, the elementary

particles generally available for AB experiments all have

spin one-half. In a series of articles,[3−5] Hagen shown that

there are indeed observable effects associated with the spin

degree of freedom by doing the calculation, in relativistic

quantum mechanics, with the Dirac equation in presence

of the AB effect. In nonrelativistic quantum mechanics

when the spin is included, the situation becomes quite

different. Here one is concerned with the Pauli equation.

A nonrelativistic charged spin-1/2 particle in external

electromagnetic field is described by the Pauli Hamilto-

nian,

Hp =
(p − eA)2

2M
− µσB + U , (1)

where A is electromagnetic vector potential; B = curl A

is the external magnetic field, σ = (σ1, σ2, σ3) is a vector
consisting of three Pauli matrices, U is the external scalar
potential, while M , e, and µ are respectively the mass, the
charge and the magnetic moment of particle. The external
scalar potential U can be chosen as a harmonic potential
U = Mω2r2/2.

On the other hand, the time-dependent systems are
still receiving considerable interest and used as models
to describe several physical phenomena.[12−15] Effort was
concentrated on spinless charged particle in a magnetic
field,[16−27] However, the most frequently used charged
particles have spin-1/2 and their physics is described in
the presence of a magnetic field, by the Pauli equation in
non-relativistic case. The energy levels of this system are
called Landau levels. It is well known that such a system
has played a fundamental role in physics and has a wide
spectrum of applications.[28] For example, 2D electron sys-
tems have become an active research subject due to ad-
vances in nanofabrication technology like quantum wells,
quantum wires, quantum dots, quantum Hall effect and
high superconductivity.[30,31] Currently, the 2D harmonic
potential U = Mω2r2/2 is often used to describe confined
2D systems in nonrelativistic case. For relativistic case,
such systems are described using 2D Dirac oscillator.[30]

The extension of time-dependent systems to spinning
charged particle remains unexplored and the few problems
solved for nonstationary Pauli equation in the presence of
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time-varying electromagnetic fields has been investigated
using supersymmetry.[32,33]

Recently, Bouguerra et al.[34] extended a previous
work[29] to the case of a nonrelativistic charged spin-1/2
particle with time-dependent mass and frequency confined
to (x, y) plane in the presence of the AB effect and a
two-dimensional (2D) time-dependent harmonic potential
U = M(t)ω2(t)r2/2. The corresponding time-dependent
Pauli Hamiltonian is

Hp(t) =
(p− eA)2

2M(t)
− eh̄B

2M(t)
σ3 +

1

2
M(t)ω2(t)r2 . (2)

The magnetic field B, associated to the AB effect, as-
sumed to be perpendicular to the plane and confined to a
thin magnetized filament, is given by

eB = −ν
r
δ(r)uz , (3)

where ν is a finite and nonzero flux parameter and δ(r) is
the Dirac’s function,

δ(r) =

{

0, r 6= 0 ,

∞, r = 0 .
(4)

The vector potential A that gives this magnetic field is
found to be

eA = −ν
r
θ(r)uϕ , (5)

where (r, ϕ, z) are cylindrical coordinates, uϕ denotes the
unit vector in the ϕ-direction and θ(r) is the step function
defined by

θ(r) =

{

1, r > 0 ,

0, r < 0 .
(6)

Since θ′(r) = δ(r) it is easy to verify that the above A

gives B correctly. Again, A satisfies the Coulomb gauge
condition ∇·A = 0. The problem with the magnetic field
(3) is that it introduces a singularity into wave equation
at the origin for spin particles.

There were attempts by Hagen[3−5] to provide a phys-
ical motivation for the choice of the boundary conditions
among the admissible ones. He computed the eigenfunc-
tions using the procedure of replacing the thread of flux by
a fictitious flux tube of radius R (thus removing the ambi-
guity) and then taking the limit R → 0 at the end of the
computations. Such a model has in fact been presented in
the context of obtaining the solution of the spin-1/2 AB
scattering amplitude. His starting point was the replace-
ment of the point like thread of flux by a magnetic field
concentrated on the surface of a tube of radius R and in
this case Eqs. (3) and (5) are replaced by

eB = −ν
r
δ(r −R)uz , (7)

eA = −ν
r
θ(r −R)uϕ . (8)

Using the invariant operator theory and the three el-
ements of standard representation of the group SL(2,R),
namely,

T ν1 =
1

2

[

p2
r −

h̄2

4r2
+

1

r2
(pϕ + ν)2 − νh̄

r
δ(r)σ3

]

,

T2 =
1

2
[rpr + prr], T3 =

1

2
r2 ,

with the quantum-mechanical commutators relations

[T ν1 , T2] = −2ih̄T ν1 , [T2, T3] = −2ih̄T3 ,

[T ν1 , T3] = −ih̄T2 ,

where

pr = −ih̄
( ∂

∂r
+

1

2r

)

, pϕ = −ih̄ ∂

∂ϕ
,

[r, pr] = [ϕ, pϕ] = ih̄ ,

Bouguerra et al.[34] have recently studied the nonrelativis-
tic charged spin-1/2 particle with time-dependent mass
and frequency confined to (x, y) plane in the presence of
the AB effect and a two-dimensional (2D) time-dependent
harmonic potential. Such a model has in fact been pre-
sented in the context of obtaining the solution correspond-
ing to zero radius of filament containing the Aharonov-
Bohm flux. The invariant operator I(t) =

∑3
i=1 µiTi

written as a linear combination of the three elements of
standard representation of the group SL(2,R) satisfies the
Liouville-Von Neumann equation

∂I(t)

∂t
=
i

h̄
[I(t), H] . (9)

On the other hand, if we replace the zero radius flux
tube by one of radius R, with the additional condition
that the magnetic field be confined to the surface of the
tube, we point that the part of the operator T ν1 , which
depends on the space-coordinates must contain the step
function θ(r − R). Consequently, the problem becomes
more complicated because the algebra based on

T ν1 =
1

2

[

p2
r−

h̄2

4r2
+

1

r2
(pϕ+νθ(r−R))2− νh̄

r
δ(r−R)σ3

]

,

T2 and T3 is not closed and it is difficult to construct an ex-
act invariant operator. In order to avoid this difficulty, it
is convenient to replace the radius R by ρ(t)R, where ρ(t)
is a positive time-dependent function. The limit R → 0
will be taken only after all calculations are carried out, to
avoid a singular magnetic field at the singular point r = 0
of the coordinate system.

We consider the Pauli equation of the nonrelativis-
tic charged spin-1/2 particle with time-dependent mass
and frequency confined to (x, y) plane in the presence of
the AB effect and a two-dimensional (2D) time-dependent
harmonic potential,

ih̄
∂

∂t
ψ = Hp(t)ψ , (10)

with the Pauli Hamiltonian in the polar coordinates

Hp(t) =
1

2M(t)

[

p2
r −

h̄2

4r2
+

1

r2

(

pϕ + νθ
( r

ρ(t)
−R

))2

− νh̄

ρ(t)r
δ
( r

ρ(t)
−R

)

σ3
]

+
1

2
M(t)ω2(t)r2 , (11)

and where ψ = (
ψ1

ψ2

) is the two-component spinors.

The corresponding magnetic field B and vector poten-
tial A are respectively given by:

eB = − ν

ρ(t)r
δ
( r

ρ(t)
−R

)

uz , (12)
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eA = −ν
r
θ
( r

ρ(t)
−R

)

uϕ , (13)

where we have used the following propriety of the step
function θ(r − ρ(t)R)

θ(r − ρ(t)R) = θ
( r

ρ(t)
−R

)

=







1 for
r

ρ(t)
> R ,

0 for
r

ρ(t)
< R .

(14)

This paper is organized as follows. In Sec. 2, we in-
troduce and derive an appropriate invariant operator as-
sociated to the time-dependent Hamiltonian (11). The
complete quantum solutions of the system will be inves-
tigated in Sec. 3. The concluding remarks are given in
Sec. 4.

2 Invariant Operator and Quantum Phase

Let us first recall the general method to introduce the
invariant operator theory for systems whose invariant op-
erator has a discrete[35] or continuous[36] eigenvalues. For
a system whose invariant has a completely discrete spec-
trum, specified by a time-independent eigenvalue λn,m and
a corresponding eigenvalue equation

I(t)φn,m(r, ϕ, t) = λn,m φn,m(r, ϕ, t) , (15)

where n and m denote a quantum numbers. An invari-
ant possesses a remarkable property that any eigenstate
of I(0) evolves into an eigenstate of I(t). Then, if the set
of reference eigenstates bispinors

{

φn,m(r, ϕ, t) =

(

φ1
n,m

φ2
n,m

)

(r, ϕ, t)
}

for the operator I(t) are continuous with respect to t (all
eigenstates are associated with the same time-independent
eigenvalue λn,m), the corresponding global phases αn,m(t)
are defined by the relation associated to the wave functions
ψn,m(r, ϕ, t):

ψn,m(r, ϕ, t) = exp[iαn,m(t)]φn,m(r, ϕ, t) . (16)

It follows from the Pauli equation (10) for ψn,m(r, ϕ, t)
that αn,m(t) satisfies the relation

h̄
d

dt
αn,m(t) =

〈

φn,m(t)
∣

∣

∣
ih̄
∂

∂t
−H

∣

∣

∣
φn,m(t)

〉

. (17)

Very recently, Maamache and Saadi[36] have presented
a straightforward, yet rigorous, proof of the exact quan-
tum evolution for systems whose invariant operator I(t)
verifying (9) has a completely continuous spectrum, i.e.;
its eigenvalues λk,m are purely continuous and constants

I(t)φk,m(r, ϕ, t) = λk,mφk,m(r, ϕ, t) , (18)

and have found that the eigenfunctions in a continuous
spectrum φk,m(r, ϕ, t) of the invariant operator I(t) and
the solution ψk,m(r, ϕ, t) of the Pauli equation are in the
form

ψk,m(r, ϕ, t) = exp[iαk,m(t)]φk,m(r, ϕ, t) , (19)

where the global phase αk,m(t) is given by

h̄
d

dt
αk,m(t) =

∫ +∞

−∞

〈

φk′,m(t′)
∣

∣

∣
ih̄

∂

∂t′

−H(t′)
∣

∣

∣
φk,m(t′)

〉

dk′ . (20)

Now, we look for the invariant in the form

I(t) =
µ1(t)

2

[

p2
r −

h̄2

4r2
+

1

r2

(

pϕ + νθ
( r

ρ(t)
−R

))2

− νh̄

ρ(t)r
δ
( r

ρ(t)
−R

)

σ3
]

+
µ2(t)

2
[rpr + prr] +

µ3(t)

2
r2 , (21)

where µi(t), i = 1, 2, 3 are time-dependent functions which
should be determined. Inserting Eqs. (11) and (21) into
Eq. (9), we find that the time-dependent parameters are
given by

µ1(t) = ρ(t)2 , (22)

µ2(t) = −M(t)ρ(t)ρ̇(t) , (23)

µ3(t) =
1

ρ(t)2
[C + (M(t)ρ(t)ρ̇(t))2] , (24)

where

C = µ1(t)µ3(t) − µ2(t)
2 (25)

is a real constant (this can be checked by direct differenti-
ation of C with respect to time) and the time-dependent
function ρ(t) obeys the following auxiliary equations:

ρ̈(t) +
Ṁ(t)

M(t)
ρ̇(t) + ω(t)2ρ(t) =

C

M(t)2ρ(t)3
. (26)

Consequently, the invariant operator can be constructed
in the form

I(t) =
1

2
ρ(t)2

[

p2
r −

h̄2

4r2
+

1

r2

(

pϕ + νθ
( r

ρ(t)
−R

))2

− νh̄

ρ(t)r
δ
( r

ρ(t)
−R

)

σ3
]

−M(t)ρ(t)ρ̇(t)[rpr + prr]

+
1

ρ(t)2
[C + (M(t)ρ(t)ρ̇(t))2]r2 . (27)

3 Quantum Solutions

To find the eigenstates of I(t), we look for a time-
dependent unitary transformations U(t) and Vρ(t) such
that

φγ,m(r, ϕ, t) = eimϕU†(t)V +
ρ(t)χγ,m(r) (28)

i.e., U(t) and Vρ(t) bring any solution of the operator
eigenvalue equation

I(t)φγ,m(r, ϕ, t) = λγ,m φγ,m(r, ϕ, t) , (29)

( the subscript γ depends on the nature of the spectrum
discrete (γ = n) or continuous (γ = k)), into a solution of
the operator eigenvalue equation

I ′(t)χγ,m(r) = λγ,m χγ,m(r) , (30)

where the functional forms of Vρ(t) and U(t) are

Vρ(t) = exp
( i ln ρ(t)

2h̄
[rpr + prr]

)

, (31)

U(t) = exp
[

−iM(t)ρ̇(t)

2h̄ρ(t)
r2

]

. (32)
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It can easily be shown that under these transformations
the coordinate and momentum operators change accord-
ing to

Vρ(t)rV
†
ρ(t) = ρ(t)r , (33)

U(t)prU
†(t) = pr +

M(t)ρ̇(t)

ρ(t)
r , (34)

Vρ(t)prV
†
ρ(t) =

1

ρ(t)
pr . (35)

An important property of the transformation Vρ(t), the

action of which on a wave function in the r representation

reads

Vρ(t) χγ,m(r) = exp
( i ln ρ(t)

2h̄

)

χγ,m(rρ(t)) , (36)

and therefore it defines a dilation.

One sees that the transformed invariant I ′(t) must sat-

isfy the relation

I ′(t) = Vρ(t)U(t)I(t)U†(t)V †
ρ(t) =

1

2

{[

p2
r −

h̄2

4r2
+

1

r2
(pϕ + νθ(r −R))2 − νh̄

r
δ(r −R)σ3

]

+ Cr2
}

. (37)

By using δ(ξ −R)/ξ = δ(ξ −R)/R, Eq. (30) takes the following form

1

2

[

−h̄2
(1

r

∂

∂r
r
∂

∂r

)

+
1

r2

(

−ih̄ ∂

∂ϕ
+ νθ(r −R)

)2

− νh̄

R
δ(r −R)σ3 + C r2

]

χγ,m(r, ϕ) = λγ,mχγ,m(r, ϕ) . (38)

in terms of two-component spinors χγ,m =
(

χ1

γ,m

χ2

γ,m

)

. The

important point is that the transformed eigenvalue prob-
lem (38) is an ordinary time-independent Pauli equation
of the nonrelativistic charged spin-1/2 particle confined
to (x, y) plane in the presence of the AB effect and a har-
monic potential. The fact that C is constant enables us
to investigate the system separately for three cases, where
C > 0, C = 0 and C < 0. The eigenstate of the system is
discrete for C > 0 since the transformed invariant opera-
tor Eq. (38) corresponds to that of the oscillating system
while that of the other two cases are continuous.

In order to solve the quantum problem and deter-
mine the solution ψγ,m(r, ϕ, t) of the time-dependent Pauli
equation, firstly let us calculate the quantum phases
αγ,m(t) (17) and (20). Carrying out the unitary trans-
formations (31) and (32), the right-hand side of Eqs. (17)
and (20) becomes

〈

φγ′,m(t)
∣

∣

∣
ih̄
∂

∂t
−H(t)

∣

∣

∣
φγ,m(t)

〉

= − 1

M(t)ρ2(t)
〈χγ′,m|I ′|χγ,m〉 , (39)

which gives
〈

φγ′,m(t)
∣

∣

∣
ih̄
∂

∂t
−H(t)

∣

∣

∣
φγ,m(t)

〉

= −λγ,m
〈χγ′,m|χγ,m〉
M(t)ρ2(t)

. (40)

The scalar product 〈χγ′,m|χγ,m〉 depends on the nature of

the spectrum of the invariant i.e.,

〈χγ′,m|χγ,m〉 = δγ′γI (41)

for discrete one, or

〈χγ′,m|χγ,m〉 = δ(γ′ − γ)I (42)

for continuous one.

Thus, the global phase can be represented by

h̄αγ,m(t) = −λγ,m
∫ t

t0

dt′

M(t′)ρ2(t′)
. (43)

Let us write

χγ,m = fγ,m(r) exp(imϕ) ,

equation (38) of the two components χ1,2
γ,m is reduced to

1

2

[

−h̄2
(1

r

∂

∂r
r
∂

∂r

)

+
h̄2

r2

(

m+
ν

h̄
θ(r −R)

)2

+ C r2 − νh̄s

R
δ(r −R)

]

f1,2
γ,m = λγ,m f1,2

γ,m, s = ±1 , (44)

where s = ±1 is twice the spin value (+1 for spin “up” and −1 for spin-down). For all what follows we adopt the
following condition:

If f1
γ,m corespond to spin-up (s = +1) then f2

γ,m is associated to spin-down (s = −1) .

We note that the last equation, except the inclusion of the oscillator term, is identical to that derived by Hagen[3−5]

for a Dirac particle of mass M. In Ref. [34] an approach was taken, such an ansatz, which was based on the physically
reasonable modifiaction of the vector potential to obtain this equation.

Equation (44) takes the following form in the two regions (i.e. the inside and the outside of the solenoid),

1

2

[

−h̄2
(1

r

∂

∂r
r
∂

∂r

)

+ h̄2 (m+ ν/h̄)2

r2
+ C r2

]

f1,2
γ,m(r) = λγ,mf

1,2
γ,m(r), r > R , (45)

1

2

[

−h̄2
(1

r

∂

∂r
r
∂

∂r

)

+ h̄2m
2

r2
+ Cr2

]

f1,2
γ,m(r) = λγ,mf

1,2
γ,m(r), r < R . (46)

Since equations (45) and (46) have a regular and irregular solution, it is necessary to give a boundary condition

fγ,m(R− ε) = fγ,m(R+ ε) , (47)
[dfγ,m(r)

dr

]R+ε

R−ε
=

sν

h̄R
fγ,m(R) , (48)
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which allows a unique result to be obtained.

Case 1 C > 0
This case corresponds exactly to that treated by Bouguerra et al.[34] (for C = 1 ). The solutions of the Eqs. (45)

and (46) can be obtained in the usual way in the two regions (r > R and r < R) in terms of the regular and irregular
confluent hypergeometric functions. Using (47)and (48), the eigensolution can be written as (we refer the reader to
[34] for details)

f1,2
γ,m(ξ) = D1,2

m R
|m|

exp
[

−
√
Cξ2

2h̄

]{

R−|m+ν/h̄|
(1

2
+

|m| + νs/h̄

2|m+ ν/h̄|
)

× ξ|m+ν/h̄|
1F1

(1

2

[

1 +
∣

∣

∣
m+

ν

h̄

∣

∣

∣
− λγ,m

h̄
√
C

]

,
∣

∣

∣
m+

ν

h̄

∣

∣

∣
+ 1;

√
Cξ2

h̄

)

+R|m+ν/h̄|
[1

2
− |m| + νs

h̄

2|m+ ν/h̄|
]

× ξ−t|m+ν/h̄|
1F1

(1

2

[

1 − |m+
ν

h̄

∣

∣

∣
− λγ,m

h̄
√
C

]

, 1 −
∣

∣

∣
m+

ν

h̄

∣

∣

∣
;

√
Cξ2

h̄

)}

, (49)

the R→ 0, (R2 ≈ 0) limit implies that the irregular solution contributes if the following condition
∣

∣

∣
m+

ν

h̄

∣

∣

∣
= −|m| − νsρ

h̄
(50)

is satisfied. In that case one must include the next higher power of R in the coefficient of the regular solution term in
(49). This yields

f1,2
γ,m = R|m|e−

√
Cξ2/2h̄

{

C1,2
m R|m|+(νs/h̄)+2ξ|m+ν/h̄|

1F1

(1

2

[

1 + |m+
ν

h̄

∣

∣

∣
− λγ,m

h̄
√
C

]

,
∣

∣

∣
m+

ν

h̄

∣

∣

∣
+ 1;

√
Cξ2

h̄

)

+R−|mt|−(νs/h̄)ξ−|m+(ν/h̄)|
1F1

(1

2

[

1 −
∣

∣

∣
m+

ν

h̄

∣

∣

∣
− λγ,m

h̄
√
C

]

, 1 −
∣

∣

∣
m+

ν

h̄

∣

∣

∣
;

√
Cξ2

h̄

)}

, (51)

where C1,2
m is a nonvanishing constant.

It follows that the irregular solution dominates

f1,2
γ,m → ξ−|m+ν/h̄|

1F1

(1

2

[

1 −
∣

∣

∣
m+

ν

h̄

∣

∣

∣
− λγ,m

h̄
√
C

]

, 1 −
∣

∣

∣
m+

ν

h̄

∣

∣

∣
;

√
Cξ2

h̄

)

, (52)

provided that

|m| + νs

h̄
+ 1 > 0 . (53)

By using relation (50), the last condition (53) is written
in the form

∣

∣

∣
m+

ν

h̄

∣

∣

∣
< 1 . (54)

At the limit R → 0, it is noticed that the solution (49)
is always regular except if the two relations (50) and (54)
are simultaneously verified. In order to give a signification

of (50) and (54), it is convenient to write
ν

h̄
= N + η, where N is an integer and 0 ≤ η < 1 .(55)

Consequently, the solution f1,2
γ,m is always a regular solu-

tion except for the two cases

m = −N, N ≥ 0, s = −1 , (56)

or

m = −N − 1, N + 1 ≤ 0, s = +1 , (57)

where the irregular solution at the origin occurs.
Then, the eigenfunction χ1,2

γ,m can be represented by

χ1,2
γ,m(r, ϕ) = D1,2

m

[

1 − θ
(ν

h̄

)

δm,−N − θ
(

−ν
h̄

)

δm,−N−1

]

r|m+ν/h̄|e−
√
Cr2/2h̄eimϕ

× 1F1

(1

2

[

1 +
∣

∣

∣
m+

ν

h̄

∣

∣

∣
− λγ,m

h̄
√
C

]

,
∣

∣

∣
m+

ν

h̄

∣

∣

∣
+ 1,

√
Cr2

h̄

)

+ θ(−s)θ
(ν

h̄

)

δm,−ND
1,2
m r−η 1F1

(1

2

[

1 − η − λγ,m

h̄
√
C

]

, 1 − η,

√
Cr2

h̄

)

e−
√
Cr2/2h̄e−iNϕ

+ θ(s)θ
(

−ν
h̄

)

δm,−N−1D
1,2
m rη−1

1F1

(1

2

[

η − λγ,m

h̄
√
C

]

, η,

√
Cr2

h̄

)

e−
√
Cr2/2h̄e−i(N+1)ϕ , (58)

where θ(x) is the usual step function and δij is the Kronecker symbol.
The asymptotic behavior 1F1(α, γ, z) → [Γ(γ)/Γ(α)]ezzα−γ of the confluent series for large values of its argument

shown that the function χ1,2
γ,m is exponentially divergent. This divergence cannot be avoided except that by putting[37]

α = −n, where n = 0, 1, 2, . . ., thus transforming series into a polynomial of degree n (Laguerre polynomials). Hence

χ1,2
n,m(r, ϕ) = D1,2

m,n

[

1 − θ
(ν

h̄

)

δm,−N − θ
(

−ν
h̄

)

δm,−N−1

]

r|m+ν/h̄|L|m+ν/h̄|
n

(

√
Cr2

h̄

)

exp
(

−
√
Cr2

2h̄

)

eimϕ
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+ θ(−s)θ
(ν

h̄

)

δm,−ND
1,2
m,nr

−ηL−η
n

(

√
Cr2

h̄

)

exp
(

−
√
Cr2

2h̄

)

e−iNϕ

+ θ(s)θ
(

−ν
h̄

)

δm,−N−1D
1,2
m,nr

η−1Lη−1
n

(

√
Cr2

h̄

)

exp
(

−
√
Cr2

2h̄

)

e−i(N+1)ϕ , (59)

where the constant

Dm,n =
n!Γ(|m+ ν/h̄| + 1)

Γ(|m+ ν/h̄| + 1 + n)
Dm .

If the conditions (56) and (57) are not satisfied (con-
tribution of the regular solution), the eigenvalue of the
regular solution are obtained starting from the condition

1

2

[
∣

∣

∣
m+

ν

h̄

∣

∣

∣
+ 1 − λm,n

h̄
√
C

]

= −n ,

it follows that

λm,n = h̄
√
C

(

2n+ |m+
ν

h̄
| + 1

)

. (60)

If the conditions (56) and (57) are satisfied (contribu-
tion of the irregular solution), the eigenvalue takes differ-
ent values for the two following cases.

Sub-case 1.1 (m = −N, N ≥ 0, s = −1): From

1

2

[

1 − η − λm,n

h̄
√
C

]

= −n ,

the eigenvalue takes the value

λm,n = h̄
√
C(2n+ 1 − η) . (61)

Sub-case 1.2 (m = −N − 1, N + 1 ≤ 0, s = +1): From

1

2

[

η − λm,n

h̄
√
C

]

= −n ,

the eigenvalue takes the value

λm,n = h̄
√
C(2n+ η) . (62)

Then, one deduces that the eigenvalue λm,n of the invari-
ant is given by

λn,m = h̄
√
C

[

1 − θ
(ν

h̄

)

δm,−N − θ
(

−ν
h̄

)

δm,−N−1

](

2n+
∣

∣

∣
m+

ν

h̄

∣

∣

∣
+ 1

)

+ h̄
√
Cθ

(ν

h̄

)

δm,−N(2n+ 1 − η) + θ
(

−ν
h̄

)

δm,−N−1(2n+ η) , (63)

and consequently the phase (43) is given by

αn,m(t) = −h̄
√
C

[

1 − θ
(ν

h̄

)

δm,−N − θ
(

−ν
h̄

)

δm,−N−1

][

2n+
∣

∣

∣
m+

ν

h̄

∣

∣

∣
+ 1

]

∫ t

0

dt′

Mρ2

− h̄
√
C

[

θ
(ν

h̄

)

δm,−N(2n+ 1 − η) + θ
(

−ν
h̄

)

δm,−N−1(2n+ η)
]

∫ t

0

dt′

Mρ2
. (64)

It is worth noting that the phase depends on the spin and the magnetic flux. The first term is due to the contribution
of the regular solution while the second term is due to the irregulars solutions.

In the particular case of spinless particle, one component of the general solution is reduced to the solution of a
two dimensional time-dependent harmonic oscillator in presence of the AB effect if one takes only the contribution of
this component in the phase (64).[29] In the absence of the AB effect (ν = 0), we find also that one component of the
general solution is reduced to the solution of a 2D dimensional time-dependent harmonic oscillator if one takes only
the contribution of this component in the phase (64).[26,29]

Case 2 C = 0
Let us note that for C = 0 the wave equations defined in (45) and (46) represent a free particle in AB effect

analyzed by Hagen.[3−5] In particular, it was shown[3−5] that the solutions in the two regions r < R and r > R are
respectively

f1,2
k,m(ξ) =

{

A1,2
m J|m+ν/h̄|(kr) +B1,2

m J−|m+ν/h̄|(kr), r > R ,

C1,2
m J|m|(kr), r < R ,

(65)

where

k2 =
2λk,m

h̄2 , (66)

A1,2
m , B1,2

m , and D1,2
m are constants and J is the usual Bessel function.

Using the continuity relations (47) and (48), and the following Bessel’s proprieties

J|m|(kR) ≈ (kR)|m|

2|m|Γ(|m| + 1)
, (67)

d

dR
J|m|(kR) ≈ k|m|(kR)|m|−1

2|m|Γ(|m| + 1)
, (68)

and taking the limit R → 0, (R2 ≈ 0), we find

f1,2
k,m(ξ) =

{

(kR)|m|(kR)−|m+ν/h̄|
[1

2
+

|m| + sν/h̄

2|m+ ν/h̄|
]

J|m+ν/h̄|(kξ)+(kR)|m+ν/h̄|
[1

2
− |m| + sν/h̄

2|m+ ν/h̄|
]

J−|m+ν/h̄|(kξ)
}

. (69)
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As for the precedent case, the R→ 0, (R2 ≈ 0) limit implies that the irregular solution contributes if the condition
(50) is satisfied. In that case one must include the next higher power of R in the coefficient of the regular solution
term in (69). This yields

f1,2
k,m = (kR)|m|{C1,2

m (kR)|m|+sν/h̄+2J|m+ν/h̄|(kξ) + (kR)−|m|−sν/h̄J−|m+ν/h̄|(kξ)
}

, (70)

where C1,2
m is a nonvanishing constant.

It may be noted that equations (53)–(57) imply that

χ1,2
k,m(r, ϕ) =

{

′
∑

e−iπ/2|m+ν/h̄|J|m+ν/h̄|
(

k
r

ρ

)

eimϕ + θ(−s)θ
(ν

h̄

)

e−iNϕe−i(π/2)(N−ν/h̄)J−η
(

k
r

ρ

)

+ θ(+s)θ
(

−ν
h̄

)

e−i(N+1)ϕe−i(π/2)(ν/h̄−N−1)Jη−1

(

k
r

ρ

)}

, (71)

be an admissible eigenfunction solution.
Then, using (66) one deduces that the phase (43) is given by

αk,m(t) = − h̄
2k2

2

∫ t

0

dt′

Mρ2
. (72)

Case 3 C < 0
Let us note that for C < 0 the wave equations defined in (45) and (46) correspond to the Pauli equations of the

nonrelativistic charged spin-1/2 particle confined to (x, y) plane in the presence of the AB effect and a 2D parabolic
potential barrier known also as 2D inverted isotropic oscillator, with purely imaginary frequency C = −$2 = (±i$)2,

1

2

[

−h̄2
(1

r

∂

∂r
r
∂

∂r

)

+ h̄2 (m+ ν/h̄)2

r2
−$2 r2

]

f1,2
γ,m(r) = λγ,mf

1,2
γ,m(r), r > R , (73)

1

2

[

−h̄2
(1

r

∂

∂r
r
∂

∂r

)

+ h̄2m
2

r2
−$2r2

]

f1,2
γ,m(r) = λγ,mf

1,2
γ,m(r), r < R . (74)

The connection with the Pauli equations of the nonrelativistic charged spin-1/2 particle in the presence of the AB
effect and a 2D harmonic potential (45) and (46) may be established by the following scaling operator,[38]

V̂π/4 = exp
( π

8h̄
[rpr + prr]

)

.

Now, let us introduce
f ′1,2γ,m(r) = V̂π/4f

1,2
γ,m(r) . (75)

This yields for f ′1,2γ,m(r) the result

1

2

[

−h̄2
(1

r

∂

∂r
r
∂

∂r

)

+ h̄2 (m+ ν/h̄)2

r2
+$2 r2

]

f ′1,2γ,m(r) = λγ,m f ′1,2γ,m(r), r > R , (76)

1

2

[

−h̄2
(1

r

∂

∂r
r
∂

∂r

)

+ h̄2m
2

r2
+$2r2

]

f ′1,2γ,m(r) = λγ,mf
′1,2
γ,m(r), r < R . (77)

It is evident that these two last equations are equivalent to the case C > 0. Following the same steps as for C > 0
and applying V̂ −1

π/4 at the end, the regular solution takes the form,[39]

χ1,2
µ,m(r, ϕ) = D1,2

m

[

1 − θ
(ν

h̄

)

δm,−N − θ
(

−ν
h̄

)

δm,−N−1

]

ξ|m+ν/h̄|e−i$ξ
2/2h̄eimϕ

×1 F1

(1

2

[

1 +
∣

∣

∣
m+

ν

h̄

∣

∣

∣
+ i

λγ,m
h̄$

]

,
∣

∣

∣
m+

ν

h̄

∣

∣

∣
+ 1,

i$ξ2

h̄

)

+ θ(−s)θ
(ν

h̄

)

δm,−ND
1,2
m ξ−η 1F1

(1

2

[

1 − η + i
λγ,m
h̄$

]

, 1 − η,
i$ξ2

h̄

)

e−i$ξ
2/2h̄e−iNϕ

+ θ(s)θ
(

−ν
h̄

)

δm,−N−1D
1,2
m ξη−1

1F1

(1

2

[

η − iλγ,m
h̄$

]

, η,
i$ξ2

h̄

)

e−i$ξ
2/2h̄e−i(N+1)ϕ , (78)

where λγ,m are the eigenvalues. Hence, as it was for the
previous case, i.e. C = 0, the solution (78) belongs to a
continuous spectrum.

4 Conclusion

We investigated Pauli solutions of a two-dimensional
time-dependent Hamiltonian system involving a time-
dependent Aharonov–Bohm effect (AB) and a time-
dependent harmonic potential. To do this we employed

invariant operator and unitary transformation methods
together. The original invariant given in Eq. (27) is ex-
plicitly a function of t, though its time derivative vanishes:
dI/dt = 0. However, the invariant, equation (38), which
is transformed by U(t) and Vρ(t), has a simple form and
is no longer a function of t. Due to this fact, the manage-
ment of transformed invariant in order to solve eigenvalue
equation is much better than treating the original one.
We found that the auxiliary equation is independent of
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the AB magnetic flux. We discussed the eigenvalue equa-
tion of the transformed invariant operator separately for
the three cases, i.e., C > 0, C = 0, and C < 0. Fol-
lowing the C’s values the spectrum of quantum states is
discrete (C > 0) or continuous (C ≤ 0). For particular
cases, the irregular solution at the origin contributes to
the wavefunctions and the phase depends on the spin and

the magnetic flux.
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