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Abstract The elastic constants and thermodynamic properties of diamond are investigated by using the CRYSTAL03

program. The lattice parameters, the bulk modulus, the heat capacity, the Grüneisen parameter, and the Debye tempera-

ture are obtained. The results are in good agreement with the available experimental and theoretical data. Moreover, the

relationship between V/V0 and pressure, the elastic constants under high pressure are successfully obtained. Especially,

the elastic constants of diamond under high pressure are firstly obtained theoretically. At the same time, the variations

of the thermal expansion α with pressure P and temperature Tare obtained systematically in the ranges of 0-870 GPa

and 0-1600 K.
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1 Introduction

Diamond is a very important material in industrial ap-

plication because of its excellent chemical and physical

properties.[1−15] It is the hardest material with the high-

est thermal conductivity (22 W/cm·K)[2−5] and the lowest

thermal expansion (1.05×10−6 K−1).[6] It is also the best

electrical insulator (1016 Ω · cm).[7] In addition, diamond

has splendid electrical properties that have many applica-

tions in modern microelectronic devices for the reason of

low dielectric constant and large band gap. For better use

of it, some properties related to thermodynamic, mechan-

ical and optical have been studied by special experiment

and theory.[8−11]

McSkimin et al.[12] measured the elastic constants of

diamond at 1 atm (1.013 25×10−4 GPa) and 298 K early

in 1972. Xie and Chen[13] investigated its thermal ex-

pansion, bulk modulus, and phonon structure. Wang and

Yang[14] researched the phase transformation between dia-

mond and graphite in preparation of diamonds by pulsed-

laser induced liquid-solid interface reaction. Blumenau

et al.[15] obtained the theoretical values of bulk mod-

ulus and elastic constants with density-functional-based

tight-binding (DFTB) method, and meanwhile, Wang et

al.[16] calculated the elastic properties of diamond by us-

ing plane-wave pseudopotential (PW-PP) method. In this

work, we focus on the elastic and thermodynamic proper-

ties of diamond under high pressure by using CRYATAL03

program[17] and the quasi-harmonic Debye model.[18] The

results obtained are well consistent with the available ex-

perimental data and other theoretical values. In Sec. 2, we

will illuminate the computational theoretical method, and

the results and some discussion are presented in Sec. 3.

2 Theoretical Methods

2.1 Total Energy Electronic Structure Calcula-

tions

In this work, the lattice parameter is calculated by the

relation of energy and volume, and use the Monkhorst–

Pack mesh with 8 × 8 × 8 k-points. Calculations were

performed with a development version of the periodic ab

initio CRYSTAL03 program. Crystalline orbitals are rep-

resented as linear combinations of Bloch Functions (BF),

and are evaluated over a regular three-dimensional mesh

in reciprocal space. Each BF is built from local atomic

orbitals (AO), which are contractions (linear combina-

tions with constant coefficients) of Gaussian-type func-

tions (GTF), each GTF being the product of a Gaussian

times a real solid spherical harmonic. All electron basis

sets have been used for C atoms. In order to obtain the

elastic constants, we use two kinds of basis sets match-

ing three functional forms, that is, 6-21G* modified ba-

sis set with B3PW,[19−23] 6211 basis set with restricted

closed shell Hartree–Fock Jamiltonian (RHF),[24,25] and

6211 basis set with unrestricted open shell Hartree–Fock

Hamiltonian (UHF).[26]

For the ground state properties of cubic structure di-

amond, we set a series of lattice constant a to obtain the

total energy E and the corresponding primitive cell vol-

ume V at P = 0 GPa and T = 0 K, and then the E-V
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curve can be obtained by fitting the E-V data to the nat-

ural strain EOS,[27]

p = 3B0fE(1 + fE)5/2
(

1 +
3

2
(B′ − 4)fE

+
3

2

(

B0B
′′ + (B′ − 4)(B′ − 3) +

35

9

)

f2
E

)

, (1)

where fE is written as

fE =
(V0/V )2/3 − 1

2
, (2)

B0 and B′ are the zero pressure bulk modulus and its pres-

sure derivative, respectively, B′′ is the second derivative.

They are given in terms of a0, a1, and a2, where a0, a1,

and a2 are the fitting parameters

B0 = a0 , (3)

B′ = 4 +
2a1

3B0
, (4)

B′′ =
(2a2)/(3B0) − B′(B′ − 7) − (143/9)

B0
. (5)

2.2 Elastic Properties

The elastic constants are the second derivatives of the

energy density with respect to strain components[28]

Cij =
1

V

∂2E

∂εi∂εj
, (6)

where Cij is the elastic constant, E is the unit cell energy,

εi refers to the strain components expressed according to

Voigt’s notation with a single index (i = 1, 2, 3, 4, 5, 6),

and V is the cell volume. Particular care is required in

the selection of the computational parameters and of the

points, where the energy is evaluated, in order to avoid

large numerical errors in the fitting procedure. When

the unit cell is deformed, the point group is reduced to

a subgroup of the original point group. The new point

group is automatically selected by the CRYSTAL03 code.

Off-diagonal (partial derivatives) elastic constants can be

computed as linear combinations of single-variable energy

curves. For the cubic structure diamond, C12 can be ob-

tained from B = (C11 +2C12)/3 and (C11 −C12). Follow-

ing the deformation of the unit cell, the internal relaxation

of the atoms may be necessary (depending on the space

group symmetry).

A Taylor expansion of the energy of the unit cell to

the second order in the strain components yields[29,30]

E(ε) = E(0) +
6

∑

i

∂E

∂εi
εi +

1

2

6
∑

i,j

∂2E

∂εi∂εj
εiεj . (7)

If E(0) refers to the equilibrium configuration the first

derivative is zero, since there is no force on any atom in

equilibrium. The elastic constants of the system can be

obtained by evaluating the energy as a function of defor-

mations of the unit cell parameters. The indices of the

non-zero element(s) (in the Voigt convention) of the ma-

trix give the corresponding elastic constants.

To obtain the elastic constants of diamond under pres-

sure, an elastic deformation of the lattice may be defined

in terms of the γ strain tensors defined. The elastic con-

stant is (1/V )(∂2E/∂γ2)|γ=0, where V is the volume of

the primitive unit cell. We here apply three independent

strains to each of these structures, which are given in Ta-

ble 1. Strains 1–3 are not volume-conserving. We calcu-

late the total energy of each strain for a number of small

values of γ. These energies are then fitted to a polynomial

in γ and the curvature of the energy versus γ curve was

obtained.

Table 1 The strains used to calculate the elas-
tic constants of diamond.

Strains
Parameters

1

V
∂2E
∂γ2

∣

∣

γ=0(unlisted: εij = 0)

1 ε11 = γ, ε22 = −γ 2(C11 − C12) − 4P

2 ε23 = γ, ε32 = γ 4C44 − 2P

3 ε11 = ε22 = γ 2(C11 + C12 − P )

The bulk modulus B0 and the shear modulusG are

given by[31]

B0 =
C11 + 2C12

3
, (8)

G =
GV + GR

2
, (9)

where C = (C11 − C12)/2, GV = (2C + 3C44)/5, GR =

15 ∗ (6/C + 9/C44)
−1, GV is the Voigt shear modulus and

GR is the Reuss shear modulus. For cubic crystals under

pressure P , mechanical stability of crystals is judged by

the following conditions,[32]

C̃44 > 0, C̃11 > |C̃12|, C̃11 + 2C̃12 > 0 , (10)

where C̃αα = Cαα − P (α = 1, 4), C̃12 = C12 + P .

An important parameter is the internal strain parame-

ter ξ introduced by Kleinman,[33] which describes the rel-

ative positions of the cation and anion sublattices under

volume-conserving strain distortions, for which positions

are not fixed by symmetry. The parameter ξ can be ob-

tained from[34,35]

ξ =
C11 + 8C12

7C11 + 2C12
. (11)

The shear anisotropic factors provide measures of the de-

grees of anisotropy in atomic bonding in different crys-

tallographic planes. For a transversely isotropic material,

the anisotropies in shear are given by[36]

Ashear =
2C44

C11 − C12
. (12)

2.3 Thermodynamic Properties

The thermodynamic properties of diamond are inves-

tigated by using the quasi-harmonic Debye model,[18] in
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which, the non-equilibrium Gibbs function G∗(V ; P, T ) is

taken in the form of

G∗(V ; P, T ) = E(V ) + PV + AVib(Θ(V ); T ) , (13)

where E(V ) is the total energy, PV corresponds to the

constant hydrostatic pressure condition, Θ(V ) is the De-

bye temperature, and the vibrational contribution AVib

can be written as[37,38]

AVib(Θ; T ) = nkBT
[9

8

Θ

T
+ 3 ln(1 − e−Θ/T )

− D
(Θ

T

)]

, (14)

where D(Θ/T ) represents the Debye integral, n is the

number of atoms per formula unit. For an isotropic solid,

Θ is expressed by[37]

ΘD =
h̄

kB

[6π2V 1/2n]1/3f(σ)

√

BS

M
, (15)

where M is the molecular mass per unit cell, BS is the

adiabatic bulk modulus, which can be approximated by

the static compressibility[39]

BS
∼= B(V ) = V

{d2E(V )

dV 2

}

, (16)

f(σ) is given by Ref. [39],

f(σ) =
{

3
[

2
(2

3

1 + σ

1 − 2σ

)3/2

+
(1

3

1 + σ

1 − σ

)3/2]−1}1/3

, (17)

the Poisson σ is taken as 0.25.[31] Therefore, the non-

equilibrium Gibbs function G∗(V ; P, T ) as a function of

(V ; P, T ) can be minimized with respect to volume V ,
(∂G∗(V ; P, T )

∂V

)

P,T
= 0 . (18)

By solving Eq. (18), one can get the thermal equation of

state (EOS) V (P , T ). The isothermal bulk modulus BT ,

the heat capacity CV , and the thermal expansion coeffi-

cient α are given by[17]

BT (P, T ) = V
(∂2G∗(V ; P, T )

∂V 2

)

P,T
, (19)

CV = 3nkB

[

4D
(Θ

T

)

−
3Θ/T

eΘ/−1

]

, (20)

α =
γCV

BT V
, (21)

where γ is the Grüneisen parameter, which is defined as

γ = −
d ln Θ(V )

d lnV
. (22)

Applying these methods described above, we have success-

fully investigated the thermodynamic properties of some

materials.[40−43]

3 Results and Discussion

The obtained lattice a, bulk modulus B0, and its pres-

sure derivative B’ for cubic structure diamond at P = 0

and T = 0 are listed in Table 2. We here choose three

exchange-correlation Hamiltonian functionals for compar-

ison, including the restricted closed shell Hhartree–Fock

functions (RHF), unrestricted open shell Hartree–Fock

functions (UHF), and the B3PW form of density func-

tional theory (DFT). It is found that the RHF and UHF

obtain a very accurate lattice constant, compared with the

experimental value, only less than 0.02%, and the B3PW

form shows more than 0.1%. When we calculate the bulk

modulus of diamond, the RHF and UHF do not have good

results, but the B3PW has a good outcome. It suggests

the B3PW be a reasonable choice for investigating the

elastic constants of diamond.

For the cubic structure diamond, there are only three

independent elastic constants, i.e. C11, C12, and C44 (be-

cause of the symmetry analysis, other parties are zero ac-

cordingly). In Table 1, we also list the obtained elas-

tic constants, together with the experimental data[12] and

other theoretical results.[15,16,44,45] Obviously, the results

from B3PW are closer to the experimental data than those

from RHF and UHF, and are in agreement with other the-

oretical results.

Table 2 Lattice constant a (Å), bulk modulus B0 (GPa), and its pressure derivative B′,
together with the experimental data and other theoretical results for diamond at 0 GPa and
0 K.

a B0 B′ C11 C12 C44 ξ Ashear

Present (B3PW) 3.5707 442.8 3.43 1097.5 115.5 598.2 0.255 1.21

Present (RHF) 3.5663 508.7 3.58 1289 123 706 0.245 1.21

Present (UHF) 3.5663 508.7 3.58 1289 123 706 0.245 1.21

GAPSSa 3.5569 433 1043 128 534

DFTBb 487 1116 172 608

PW-PPc 1099.6 142.8 587.0

PI MCd 3.5493 437

Expt. 3.5665e 442f 1079f 124f 578f

aRef. [44], bRef. [15], cRef. [16], dRef. [45], eRef. [46], fRef. [12]
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In Fig. 1, we present the normalized volume-pressure

diagrams of diamond at 0 K, 600 K, and 1500 K. We can

see that, when the pressure P increases, the relative vol-

ume V/V0 decreases at a given temperature, and the rela-

tive volume V/V0 of higher temperature is less than that

of lower temperature at the same pressure. On the other

hand, the volume V decreases with the elevated pressure

P , and decreases with the elevated temperature T .

Fig. 1 Relative volume versus pressure of diamond at
0 K, 600 K, and 1500 K, respectively.

Fig. 2 Calculated pressure dependence of Cij and B
for diamond.

Table 3 Calculated lattice constant a (Å), elastic con-
stants Cij (GPa), and elastic moduli B, B′

0 (GPa) of di-
amond under pressure (GPa) at 0 K.

P a C11 C12 C44 B B′

0 3.5707 1097.5 115.5 598.2 442.8 3.43

100 3.3798 1785 273 1037 777.1 3.02

200 3.2596 2371 421 1329 1071.7 2.89

300 3.1709 2829 620 1622 1357 2.81

400 3.1008 3315 796 2146 1635.8 2.76

500 3.0430 3905 911 2253 1909.4 2.71

In Table 3 and Fig. 2, we present the lattice constant,

elastic constants, and bulk modulus of diamond under

high pressure. It is found that the variation of the elastic

constants (C11, C12, and C44) and the bulk modulus B

is with respect to the variation of pressure. It is showed

that the elastic constants and bulk modulus will linearly

increase monotonously when pressure is enhanced, and

according to the charts, our results accord with Eq. (10).

Unfortunately, no experimental and theoretical data of

elastic constants of diamond under high pressure are avail-

able for our comparison.

The heat capacity CV , Debye temperature Θ, and

Grüneisen constant γ of the cubic structure diamond at

some temperatures T and pressures P are showed in Ta-

ble 4. The Debye temperature is an important funda-

mental parameter and closely related to many physical

properties of solids, such as specific heat and melting tem-

perature. When below Debye temperature, quantum me-

chanical effects are very important in understanding the

thermodynamic properties, while above Debye tempera-

ture quantum effects can be neglected. On the other hand,

the Grüneisen parameter γ could describe the alteration

in vibration of a crystal lattice based on the increase or de-

crease in volume as a result of temperature change. It has

been widely used to characterize and extrapolate the ther-

modynamic properties of materials at high pressures and

high temperatures. From Table 4, we find that along with

the pressure increasing, the heat capacity and Grüneisen

constant decrease gradually, but the Debye temperature is

on the contrary trend in the constant temperature. From

the point of view of temperature, when pressure is con-

stant, the heat capacity and Grüneisen constant will in-

crease along with the temperature increasing.

Fig. 3 Thermal expansion versus pressure and temper-
ature for diamond.

The thermal expansion coefficients α are illustrated in

Fig. 3. We find that for a given temperature, α decreases

drastically with the increase of pressure and it is small at

higher pressures. On the other hand, for a given pressure,
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the thermal expansion coefficient α increases acutely be-

fore 800 K, and although increases after that, the thermal

expansion coefficient α structure approaches to constant

at high temperatures, which means that the temperature

dependence of α is very small at high pressure and high

temperature. We also calculate the linear thermal expan-

sion parameters αa in the intralayer and interlayer direc-

tions. Through the following equation at zero pressure

α =
(∆l/∆T )

l0
=

1

l0

∂l

∂T

∣

∣

∣

P
, (23)

where l represents the lattice constants a, we obtain

αa = 2.796 × 10−6 K−1 at room temperature. The ex-

perimental result is αa = 1.05 × 10−6 K−1 at 300 K.[6]

Our result is appropriate on the order of magnitude.

Table 4 Heat capacity CV (J · mol−1
· K−1), Debye temperature Θ (K), and Grüneisen constant

γ of diamond at temperatures T (K) and pressures P (GPa).

T P 0 100 200 300 400 500

CV 0 0 0 0 0 0

0 Θ 1816 2311 2669 2966 3221 3449

γ 1.566 1.351 1.283 1.244 1.216 1.191

CV 6.50 3.78 2.60 1.95 1.54 1.26

300 Θ 1816 2310 2669 2966 3221 3449

γ 1.567 1.351 1.283 1.244 1.216 1.191

CV 16.45 13.12 10.95 9.36 8.16 7.20

600 Θ 1811 2308 2667 2965 3220 3448

γ 1.571 1.352 1.283 1.244 1.216 1.191

CV 20.57 18.35 16.69 15.32 14.18 13.19

900 Θ 1803 2303 2664 2963 3218 3446

γ 1.576 1.353 1.284 1.245 1.216 1.191

CV 22.36 20.90 19.74 18.74 17.86 17.07

1200 Θ 1793 2297 2660 2959 3215 3443

γ 1.583 1.355 1.285 1.245 1.216 1.192

CV 23.26 22.25 21.43 20.70 20.04 19.44

1500 Θ 1783 2291 2655 2954 3211 3440

γ 1.591 1.356 1.285 1.246 1.217 1.192

4 Summary

In summary, the elastic and thermodynamic properties

of the cubic structure diamond under pressure are inves-

tigated by using first-principles calculations. The lattice

constant, bulk modulus, elastic constants of diamond are

investigated. The calculated results are in excellent agree-

ment with the available experimental data and other theo-

retical results. The normalized primitive volume V/V0 on

pressure and temperature, the variations of the thermal

expansion α and the heat capacity CV with pressure P

and temperature T , as well as the Grüneisen parameter-

pressure-temperature (γ–P–T ) relationships are obtained

systematically. Especially, the elastic constants of dia-

mond under high pressure are firstly obtained theoreti-

cally.
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