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Generalized Variational Iteration Solution of Soliton for Disturbed KdV Equation∗
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Abstract The corresponding solution for a class of disturbed KdV equation is considered using the analytic method.

From the generalized variational iteration theory, the problem of solving soliton for the corresponding equation translates

into the problem of variational iteration. And then the approximate solution of the soliton for the equation is obtained.

PACS numbers: 02.30.Jr
Key words: soliton, disturbed, variational iteration

1 Introduction

Soliton is an important notion of nonlinear science,

which has been widely applied in natural sciences such

as chemistry, biology, mathematics, communication, and

particularly in almost all branches of physics like fluid

dynamics, plasma physics, field theory, optics, condensed

matter physics etc.[1−8] Recently, more new methods are

presented, for examples, the method of hyperbolic tan-

gent function and the homogeneous equilibrium method,

the method of the Jacobi elliptic function, the method of

auxiliary equation.[9−10] And many scholars have done a

great deal of work, such as the shock wave, the scatter-

ing light wave, the quantum mechanics, the atmospheric

physics, the network of neurons and so on had studied

for the theorem of solitary wave.[1−2,11] The asymptotic

method for the nonlinear theory of solitary wave is a new

study. The main essential of this method is that the non-

linear problem is treated with linear methods by using the

asymptotic expansion. The method of generalized varia-

tional iteration[12] is namely such a new method.

During the past decade many approximate methods

for the nonlinear problem have been developed and re-

fined, including the method of averaging, the boundary

layer method, the methods of matched asymptotic expan-

sion and the multiple scales. Recently, many scholars such

as Ni and Wei,[13] Bartier,[14] Libre, Silva and Teixeira,[15]

and Guarguaglini and Natalini[16] have done a great deal

of work. Using the method of differential inequalities and

others Mo et al. considered also a class of reaction diffu-

sion problems,[17] the activator inhibitor systems,[18] the

ecological environment,[19] the shock wave,[20] the soliton

wave,[21−22,30] the laser pulse,[23] the ocean science,[24−25]

and the atmospheric physics,[26−29] etc. We consider a

class of generalized nonlinear Korteweg de Vries (KdV)

equation and obtain approximate solution of the solitary

wave.

2 Generalized Variational Iteration

Consider the following generalized nonlinear KdV

equation:[30−32]

ut + 6uuxx + uxxx = f(t, x, u) , (1)

where f is a disturbed term, which is a sufficiently smooth

bounded function with regard to their variables in corre-

sponding domains.

We first consider the typical KdV equation

vt + vxxx = −6uuxx . (2)

It is easy to see that there is the following soliton wave

for Eq. (2):[30−32]

v(t, x) = 2a secha(x − x0 − 4a2t) , (3)

where a, x0 are arbitrary constants, which can decide by

conditions of KdV equation. As a = 1, x0 = 0, surface of

the soliton wave v(t, x) in o-(t, x, u) see Fig. 1.

Fig. 1 Surface of the soliton wave v(t, x).
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In order to obtain solution of the generalized nonlin-

ear KdV equation (1), introducing the following functional

F [u]:

F [u] = u −

∫ t

0

λ
(∂u

∂τ
+ 6ū

∂2ū

∂x2
+

∂3ū

∂x3
− f(τ, x, ū)

)

dτ , (4)

where ū is the restricted variable of u,[12] λ is the Lagrange

multiplier. Compute the variation δF of functional (4),

δF = δu − (λδu)|τ=t +

∫ t

0

∂λ

∂τ
δudτ , (5)

let δF = 0, we have

∂λ

∂τ
= 0, (τ < t) . (6)

From Eqs. (5)–(6), we have

λ(t) = 1 . (7)

From Eqs. (4) and (7), we construct the generalized vari-

ational iteration:

un+1 = un −

∫ t

0

(∂un

∂τ
+ 6un

∂2un

∂x2

+
∂3un

∂x3
− f(τ, x, un)

)

dτ . (8)

From analytic behavior for the nonlinear terms of gen-

eralized disturbed KdV equation, we have

u(t, x) = lim
n→∞

un(t, x) . (9)

It is the solution of original KdV equation (1).

Selecting the initial variational iteration u0 of Eq. (8)

as v:

u0(t, x) = 2a secha(x − x0 − 4a2t) , (10)

which is soliton wave (3) of the non-disturbed typical KdV

equation (2).

Substituting Eq. (9) into Eq. (8) as n = 0, we have

u1(t, x) = 2a secha(x − x0 − 4a2t) + F0(t, x) ,

where

F0(t, x) =

∫ t

0

f(τ, x, 2a secha(x − x0 − 4a2τ))dτ . (11)

And substituting Eqs. (9)–(10) into Eq. (8) as n = 1, we

have also

u2(t, x) = 2a secha(x − x0 − 4a2t)

−

∫ t

0

∂F0(τ, x)

∂τ
+

[

6
(

F0(τ, x)
∂2u0

∂x2
+ u0

∂2F0(τ, x)

∂x2

+F0(τ, x)
∂2F0(τ, x)

∂x2

)

+
∂3F0(τ, x)

∂x3

]

dτ

+

∫ t

0

[f(τ, x, u0) − (f(τ, x, (u0 + F0(τ, x)))]dτ . (12)

Analogously, we have the figures of curve u2(t, x). From

generalized variational iteration (8), in the same method,

we can obtain un(t, x), n = 2, 3, . . ., respectively. Thus we

have the n-th order approximate solution un(t, x) of the

soliton wave for the disturbed KdV equation (1). But we

do not discuss here.

3 Example

Now we consider an infinitesimal disturbance

f(t, x, u) = ε sinu for the KdV equation (1), where ε

is a positive parameter. Thus disturbed KdV equation is

ut + 6uuxx + uxxx = ε sin u . (13)

From Eq. (10), it is easy to see that the first order

approximate expansion u1 of the soliton wave for the in-

finitesimal disturbance KdV equation (13) taking a = 1,

x0 = 0 is

u1(z) = 2 sech z + εf0(Z),

where z = x − 4t and

f0(z) = −
1

4

∫ z

0

sin(2 sech τ)dτ.

Approximate curves of the soliton wave u0(z) and

u1(z) on o-(z, u) as ε = 0.05 and ε = 0.01, respectively,

see Figs. 2 and 3.

Fig. 2 Approximate curves of the soliton wave u(z)
(ε = 0.05).

Fig. 3 Approximate curves of the soliton wave u(z)
(ε = 0.01).

From Figs. 2 and 3, we can know that the first approx-

imate solution u1 of travelling wave u(x−4t) changes and

tends to stable as larger z = x − 4t.

From Eq. (12), the second order approximate expan-

sion u2(z) of the soliton wave for the infinitesimal distur-

bance KdV equation (13) taking a = 1, x0 = 0 is
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u2(z) = 2 sech z + εf0(z) +
1

4
ε

∫ z

0

[

−
1

4

d

dτ
(sin(2 sech τ)) + 6f0(τ)

∂2

∂τ2
(2 sech τ)

+ 6(2 sech τ)
d2f0(τ)

dτ2
+

d3f0(τ)

dτ3

]

dτ +
1

4
ε2

∫ z

0

[

6
d2f0(τ)

dτ2

]

f0(τ)dτ

−
ε

4

∫ z

0

[sin(2 sech τ) − (sin(2 sech τ + εf0(τ)))]dτ.

From generalized variational iteration (8), in the same method, we can obtain un(z), n = 2, 3, . . ., respectively.

4 Discussion

Solitary wave denotes a class of complicated natural phenomenon. Hence we need reduced basic models. And

we solve them using the approximate method. The method of generalized variational iteration is a simple and valid

method.

The method of generalized variational iteration is an approximate analytic method, which differ from general

numerical method. The expansions of solution using the method of generalized variational iteration can be continuously

analytic operation. Thus, from Eq. (12), we can study further that the qualitative and quantitative behaviors of the

solitary wave.
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