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Abstract The Schrödinger equation with hyperbolic potential V (x) = −V0sinh2q(x/d)/cosh6(x/d) (q = 0, 1, 2, 3) is

studied by transforming it into the confluent Heun equation. We obtain general symmetric and antisymmetric polynomial

solutions of the Schrödinger equation in a unified form via the Functional Bethe ansatz method. Furthermore, we

discuss the characteristic of wavefunction of bound state with varying potential strengths. Particularly, the number of

wavefunction’s nodes decreases with the increase of potential strengths, and the particle tends to the bottom of the

potential well correspondingly.
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1 Introduction

It is well known that the exact solutions of the

Schrödinger equation with different potentials play an im-

portant role in mathematics and physics.[1−6] For exam-

ple, Zhang studied exact polynomial solutions of second

order differential equations and their applications;[1] Lee

et al. applied some polynomial algebras to get exact so-

lutions of general quantum nonlinear optical models;[2−3]

Azad investigated the polynomial solutions of differential

equations by the second order operators.[4] The exact so-

lutions of the Schrödinger equation are very important in

quantum mechanics since they contain all the necessary in-

formation of the quantum system, and some experimental

alterable parameters, which can be used to check the nu-

merical analysis of the equation.[7−8] Recently, the hyper-

bolic potentials have attracted great attention due to their

wide range of applications in physics.[9−16] For instance,

Oyewumi et al. investigated the bound-state solutions of

the Rosen–Morse potential;[9] Wei et al. researched the

Dirac equation with hyperbolic like potential;[11] Xie stud-

ied the energy spectra of a two-dimensional two-electron

quantum dot with Pöschl–Teller confining potential;[13]

Zhang et al. considered bound states of the Dirac equation

with the Scarf-type potential.[15]

In general the stationary one-dimensional Schrödinger

equation for a non-relativistic particle of mass m and en-

ergy E in a hyperbolic potential V (x) can be written as

follows:

− ~
2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) , (1)

where

V (x) = −V0
sinh2q(x/d)

cosh6(x/d)
, (q = 0, 1, 2, 3) ,

V0 and d are the depth (or height) and width of V (x)

respectively. If the parameters V0 > 0, V (x) represents

a potential well, see Fig. 1; if the parameter V0 < 0,

V (x) depicts a potential barrier, see Fig. 2. Downing pre-

sented the polynomial solutions of the case with V0 > 0

and q = 2 via reducing confluent Heun function to Heun

polynomials.[6] In this work, we aim to present the general

symmetric and antisymmetric polynomial solutions of all

cases and discuss their applications in physics.

This paper is organized as follows. In Sec. 2, we trans-

form the Schrödinger equation into the confluent Heun

equation by suitable transformations. Then, the general

symmetric and antisymmetric polynomial solutions can

be obtained via an effective technique and the Functional

Bethe ansatz method. We find that all expressions for

energy eigenvalues, wavefunctions and constraints can be

unified in one form for symmetric and antisymmetric so-

lutions, respectively. Moreover, in order to ensure the en-

ergy to be real, we need to choose q = 0, 2 when V0 > 0,

and q = 1, 3 when V0 < 0. In Sec. 3, we present the wave-

function of the first state, and discuss the wavefunctions

of bound state. Finally, we draw conclusions in Sec. 4.
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Fig. 1 (Color online) The plot of the hyperbolic double-well potentials when V0 > 0, (a) For q = 0, (b) For
q = 1, (c) For q = 2, (d) For q = 3.

Fig. 2 (Color online) The plot of the hyperbolic double-barrier potentials when V0 < 0, (a) For q = 0, (b) For
q = 1, (c) For q = 2, (d) For q = 3.

2 Reduction to a Confluent Heun Equation

and General Exact Polynomial Solutions

Most of the theoretical physics known today is de-

scribed by using a small number of differential equations,

such as the hypergeometric equation, the Heun equa-

tion, etc.[17−21] In this section, we will transform the

Schrödinger equation into confluent Heun equation by ap-

propriate transformations. Heun equation is a second-

order linear differential with four regular singular points,

which was initially studied by Heun.[17] It has several spe-

cial cases of great importance in mathematical physics,

namely the Lamé, Mathieu, and Spheriodal differential

equations. Recently, many researchers start focusing on

Heun equation, for it has become increasingly widespread

application in physics, such as quantum ring, black holes

etc.
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From Eq. (1), we have

d2ψ(z)

dz2
+

(

εd2 + U0d
2 (cosh2(z) − 1)q

cosh6(z)

)

ψ(z) = 0 , (2)

where ε = 2mE/~2, U0 = 2mV0/~
2, z = x/d.

Upon making the change of variable η = 1/ cosh2(z),
such that the domain −∞ < z < ∞ maps to 0 < η < 1,
we obtain

η2(1 − η)
d2ψ(η)

dη2
+

(

η − 3

2
η2

) dψ(η)

dη

+
1

4
[εd2 + U0d

2η3−q(1 − η)q]ψ(η) = 0 . (3)

The last item contains the third power of the η, which

brings great difficulties to solve the equation. Therefore,

we make the following transformation

ψ(η) = exp (Aη)φ(η) , (4)

where A is a parameter to be determined.

Then, we obtain

η2(1−η) d2φ(η)

dη2
+

[

2Aη2(1−η)+
(

η− 3

2
η2

)] dφ(η)

dη
+

{

A2η2(1−η)+A
(

η−3

2
η2

)

+
1

4
[εd2+U0d

2η3−q(1−η)q]
}

φ(η) = 0.(5)

Using the identical equation

η3−q(1 − η)q =
q(q − 1)(q − 2)

6
+

(−1)q

2
q(q − 1)η − (−1)qqη2 + (−1)qη3 , (6)

we obtain

η2(1 − η)
d2φ(η)

dη2
+

[

2Aη2(1 − η) +
(

η − 3

2
η2

)] dφ(η)

dη
+

{

A2η2 +A
(

η − 3

2
η2

)

+
1

4

[

εd2 + U0d
2
(q(q − 1)(q − 2)

6
+

(−1)q

2
q(q − 1)η − (−1)qqη2

)]}

φ(η) +
[

−A2 +
1

4
(−1)qU0d

2
]

η3φ(η) = 0 . (7)

Choosing A to make the last item to be zero, i.e.

−A2 +
1

4
(−1)qU0d

2 = 0 . (8)

Therefore, Eq. (7) can be rewritten as follows

η2(1 − η)
d2φ(η)

dη2
+

[

2Aη2(1 − η) +
(

η − 3

2
η2

)] dφ(η)

dη
+

{

A2η2 +A
(

η − 3

2
η2

)

+
1

4

[

εd2 + U0d
2
(q(q − 1)(q − 2)

6
+

(−1)q

2
q(q − 1)η − (−1)qqη2

)]}

φ(η) = 0 . (9)

Applying the transformation

φ = ηαϕ(η) (10)

to transform Eq. (9) into the confluent Heun equation, where α is a parameter to be determined.

Then, we have

d2ϕ(η)

dη2
+

(

2A+
2α+ 1

η
+
γ + 1

η − 1

) dϕ(η)

dη
+

(µ

η
+

ν

η − 1

)

ϕ(η) +
[

α2 +
d2

4

(

ε+ U0
q(q − 1)(q − 2)

6

)]

ϕ(η) = 0 , (11)

where

γ = −1

2
, µ = (2α+ 1)

(

A− α

2

)

+
1

8
U0d

2(−1)qq(q − 1) , −ν = A2 − A

2
− 1

8
(−1)qqU0d

2(3 − q) − α

2
(2α+ 1).

Choosing α to make the last item to be zero, i.e.

α2 +
d2

4

(

ε+ U0
q(q − 1)(q − 2)

6

)

= 0 . (12)

Finally, we get
d2ϕ(η)

dη2
+

(

2A+
2α+ 1

η
+
γ + 1

η − 1

) dϕ(η)

dη
+

(µ

η
+

ν

η − 1

)

ϕ(η) = 0 . (13)

Equation (13) is a confluent Heun’s differential equation, with regular singularities at η = 0, 1,∞.

Furthermore, in order to obtain symmetric and antisymmetric solutions in a unified form, we make the following

transformation

ϕ = (1 − η)β/2f(η) , (14)

where β = 0 or 1, and we obtain

η(η − 1)
d2f(η)

dη2
+ [2Aη2 + (−2A+ 2α+ γ + 2 + β)η − (2α+ 1)]

df(η)

dη
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+ [(Aβ + µ+ ν)η + β(α + 1/2)− µ]f(η) = 0 . (15)

Applying the procedure of Ref. [1], Eq. (15) has polynomial solutions of degree n = 1, 2, 3, . . .

f(η) =

n
∏

i=1

(η − ηi) , (16)

where the roots η1, η2, η3, . . . , ηn obey the Bethe ansatz equations
n

∑

j 6=i

2

ηi − ηj
+

2Aη2
i + (−2A+ 2α+ γ + 2 + β)ηi − 2α− 1

η2
i − ηi

= 0 , i = 1, 2, 3, . . . , n , (17)

n
∑

i=1

ηi =
(2α+ 1)(A− α/2 − β/2) + (1/8)U0d

2(−1)qq(q − 1) − n(n− 1) − (−2A+ 2α+ γ + 2 + β)n

2A
. (18)

Moreover, the parameters α and A obey the following re-

lation

α = − (q − 1)A+ β + 3/2 + 2n

2
. (19)

Then, from Eqs. (12), (19), we obtain

ε = − 1

4d2
[2(q − 1)A+ 2β + 3 + 4n]2

− U0

6
q(q − 1)(q − 2) . (20)

Therefore, the energy eigenvalues can be obtained as fol-

lows

E = − ~
2

8md2
[2(q − 1)A+ 2β + 3 + 4n]2

− U0~
2

12m
q(q − 1)(q − 2) , (21)

where A = ±(d/2)
√

(−1)qU0. In order to ensure the en-

ergy to be real, we only choose q = 0, 2 when U0 > 0 and

q = 1, 3 when U0 < 0.

Furthermore, we obtain the wavefunctions as follows

ψ = tanhβ(z) exp
( A

cosh2(z)

) 1

cosh2α(z)

×
n

∏

i=1

( 1

cosh2(z)
− ηi

)

. (22)

Thus, we have obtained the explicit expressions of en-

ergy eigenvalues, wavefunctions, and constraint conditions

in unified forms respectively.

For β = 0, we obtain the energy eigenvalues and wave-

functions of symmetric state

Es = − ~
2

8md2
[2(q−1)A+3+4n]2−U0~

2

12m
q(q−1)(q−2), (23)

ψs = exp
( A

cosh2(z)

) 1

cosh2α(z)

n
∏

i=1

( 1

cosh2(z)
− ηi

)

. (24)

For β = 1, we have the energy eigenvalues and wave-

functions of antisymmetric state

Ea = − ~
2

8md2
[2(q−1)A+5+4n]2−U0~

2

12m
q(q−1)(q−2), (25)

ψa = tanh(z) exp
( A

cosh2(z)

) 1

cosh2α(z)

×
n

∏

i=1

( 1

cosh2(z)
− ηi

)

. (26)

Obviously, Eq. (24) indicates that the symmetric wave-

functions have even nodes and the most nodes is 2n for

the n state. Similarly, Eq. (26) shows that the antisym-

metric wavefunctions have odd nodes and the most nodes

is 2n + 1 for the n state. It is worth pointing out that

symmetric and antisymmetric solutions were obtained by

two initial variable transformations in Ref. [6], while we

find that the symmetric and antisymmetric solutions can

be unified effectively. Although our results are different

from Downing’s results when q = 2,[6] we have verified

that our polynomial solutions do indeed satisfy Eq. (1)

as it is required.

3 Discussion on Wave Function with n = 1

State

In Sec. 2, we obtain the general polynomial solutions of

wavefunction for the symmetric state and the antisymmet-

ric state. In this section, for simplicity, we only consider

the first state (i.e. n = 1), and higher states n = 2, 3, . . .

can be obtained by the same recipe.

3.1 The First Symmetric State

The energy eigenvalue is

Es1 =− ~
2

2m

{ 1

4d2
[2(q−1)A+7]2 +

U0

6
q(q−1)(q−2)

}

, (27)

and the wavefunction is

ψs1 = exp
( A

cosh2(z)

) 1

cosh2α(z)

( 1

cosh2(z)
− η1

)

. (28)

There is a constraint between U0 and d from Eqs. (17)

and (18) as follows,

±
√

(−2A+ 2α+ γ + 2)2 + 8A(2α+ 1)

= (2A− α)(2α+ 1) +
1

4
U0d

2(−1)qq(q − 1)

− (−2A+ 2α+ γ + 2) , (29)

where

A = ±d
2

√

(−1)qU0 , α = −(q − 1)A+ 3/2 + 2

2
.
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×
( 1

cosh2(z)
− η1

)

. (31)

There is a constraint between U0 and d from Eqs. (17)

and (18) as follows,

±
√

(−2A+ 2α+ γ + 3)2 + 8A(2α+ 1)

= (2A− α− 1)(2α+ 1) +
1

4
U0d

2(−1)qq(q − 1)

−(−2A+ 2α+ γ + 3) , (32)

where

A = ±d
2

√

(−1)qU0 , α = − (q − 1)A+ 9/2

2
.

For simplicity, we let the width of potential d = 1, and

obtain

Case 1 U0 > 0, V (x) is potential well

(i) q = 0, A = ±
√
U0/2, α = −(−A+ 9/2)/2, the

potential U0 = 0.0072 . . ., 15.3260 . . ., 25.0 and 49.0;

(ii) q = 2, A = ±
√
U0/2, α = −(A+ 9/2)/2, the

potential U0 = 0.0047 . . ., 4.9642 . . ., 426.2320 . . ., and

1092.7989 . . .

Case 2 U0 < 0, V (x) is potential barrier

(i) q = 1, A = ±
√
−U0/2, α = −9/4, the potential

U0 = −0.0058 . . . and −16.7302 . . .;

(ii) q = 3, A = ±
√
−U0/2, α = −(2A+ 9/2)/2, the

potential U0 = −0.0039 . . . and −1.6615 . . .

We obtain that the case with q = 2, A = −
√
U0/2,

α = −(A+ 9/2)/2 has antisymmetric wavefunctions of

bound state. The energy is Ea1 = −(~2/8m)(−
√
U0+9)2,

and the wavefunction is

ψa1 = tanh(z) exp
( A

cosh2(z)

) 1

cosh2α(z)

( 1

cosh2(z)
− η1

)

.

The results for the first antisymmetric state have simi-

lar behavior with the first symmetric state, as can be seen

in Figs. 5 and 6. We find that the higher the potential

strength the tighter the confinement, but note that a de-

crease in nodes from three to one. In physics, the first

antisymmetric state is similar with the first symmetric

state.

Fig. 5 (Color online) The plot of anti-symmetric state, with q = 2, n = 1, d = 1, U0 = 426.232 048 . . ., and energy
Ea1 = −1.166 63 × 10−9 neV. (a) For wavefunction, (b) For probability density, (c) For hyperbolic double-well
potential and energy level.

Fig. 6 (Color online) The plot of antisymmetric state, with q = 2, n = 1, d = 1, U0 = 1092.798 97 . . ., and energy
Ea1 = −4.978 83 × 10−9 neV. (a) For wavefunction, (b) For probability density, (c) For hyperbolic double-well
potential and energy level.

4 Conclusion

We obtain the general polynomial solutions of the Schrödinger equation with various hyperbolic potentials, which

can be reduced to the symmetric wavefunctions with β = 0 and antisymmetric wavefunctions with β = 1. Additionally,
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we must set q = 0, 2 with V0 > 0 and q = 1, 3 with V0 < 0 for the hyperbolic potential to ensure that the energy

eigenvalue be real, which can be derived from the analytical expression of energy eigenvalue. Furthermore, we find the

number of wavefunction’s nodes decrease with the increase of potential strengths, and the particle tends to the bottom

of the potential well correspondingly, for the bound states.
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