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Abstract Motivated by the experimental realization of Dicke model in optical cavities, we model an optomechanical
system consisting of two-level BEC atoms with transverse pumping. We investigate the transition from normal and
inverted state to the superradiant phase through a detailed study of the phase portraits of the system. The rich phase
portraits generated by analytical arguments display two types of superradiant phases, regions of coexistence and some
portion determining the persistent oscillations. We study the time evolution of the system from any phase and discuss
the role of mirror frequency in reaching their attractors. Further, we add an external mechanical pump to the mirror
which is capable of changing the mirror frequency through radiation pressure and study the impact of the pump on the
phase portraits and the dynamics of the system. We find the external mirror frequency changing the phase portraits and
even shifting the critical transition point, thereby predicting a system with controllable phase transition.
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1 Introduction

Cavity optomechanics!l has been playing an impor-
tant role in the exploration of quantum mechanical sys-
tems, especially the coupling between the electromag-
netic field of the cavity and the mechanical oscillator.2—3]
The photons inside the ultrahigh finesse cavity are ca-
pable of displacing the mechanical mirror through radi-
ation pressure and this has been a subject of early re-
search in the context of nanomechanical cantilevers,!”]
vibrating microtoroids,® membranes and Bose Einstein
condensates.”) Recent advancements in the field of laser
cooling, high finesse nanomechanical mirrors have made
it possible to study ultra cold atoms by combining the
tools of cavity quantum electrodynamics. Experimental
realisation of quantum entanglement, gravitational wave
detection!'®=11 in the last few years has added new inter-
est to the field of optomechanics. Such a system with an
ensemble of N atoms with single optical mode has been
an interesting theme in quantum optics after the work of
Dicke,'? showing the effects of quantum phase transition
and superradiant phases. The phase transition from a su-
per fluid to a self organised phase, above a certain thresh-
old frequency, when a laser driven BECI!'3-16] ig coupled
to the vacuum field of the cavity refers to the basic Dicke
model.'7~19) The ultra cold atoms self organize to form
a checkerboard pattern trapped in the interference pat-
tern of the pump and the cavity beams.?0=22 This self
organization initiates at the onset of the superradiance
in an effective non equilibrium Dicke model. Since then
many theoretical proposals for single mode, multi mode!23]
and optomechanical Dicke models have been made which
are presumed to exhibit interesting physics4 and appli-
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cations in the field of quantum simulation and quantum
information.[2°=3% In the present cold atom settings, the
splitting of the two distinct momentum states of the BEC
is controlled by the atomic recoil energy, and this enables
the phase transition to be observed with optical frequen-
cies with light. This is quite similar to the theoretical
approach proposed by Dimer et al.l3! for attaining Dicke
phase transitions using Raman pumping schemes between
the hyperfine levels.%?]

In this paper, we propose an optomechanical system
consisting of N, two level elongated cigar shaped BEC in-
teracting with light in a high finesse optical cavity with
a movable mirror. Such systems can be used to investi-
gate the optomechanical effects on the second order phase
transition to a superradiant regime. We study the dynam-
ics of the system and bring out all the possible phases by
analytical arguments and further propose a modification
in the system that can be used to alter the phase portraits
and transition point of the system.

2 The Model

We consider a Fabry-Perot optical cavity with one
fixed and another movable high finesse mirror of mass M,
capable of oscillating freely with frequency w,,. A two
level, cigar shaped BEC is trapped within the cavity with
transition frequency w,. The optical cavity is subjected
to a transverse pump beam with Rabi frequency €,,, wave
vector k and frequency w,. In order to avoid population
inversion, the later is far detuned from the atomic transi-
tion w,. Absorption and emission of cavity photons gen-
erates an effective two level spin system with spin down
and spin up corresponding to the ground |0, 0) and excited

http://www.iop.org/EJ/journal/ctp http://ctp.itp.ac.cn



40 Communications in Theoretical Physics

Vol. 64

states | = k, £k) respectively. The effective Hamiltonian
of such a system can be written as (4 = 1 throughout the
paper):[33-35]

H =w,S, +wala + wnb'b+ 50aTa(b + bT)
+g(a+a')(Sy+S-)+US.d'a, (1)

where w = w. — w, — N(5/8)g2/(wa — we),P% we be-
ing the cavity frequency. U represents the back reac-
tion of the cavity light on the BEC and is given by
U= —(1/4)¢3/(wa—w,), which is generally negative, how-
ever both the signs are achievable experimentally and we
shall deal with the both in the present paper. &g is the op-
tomechanical single photon coupling strength which repre-
sents the optical frequency shift produced by a zero point
displacement. g can be identified as wz,pr/L, L being
the cavity length and x,pr denoting the mechanical zero
point fluctuations (width of the mechanical ground state
wave function).[gﬁ] wp, represents the frequency of the
mechanical mirror, which generates phonons with b(b")
as the annihilation (creation) operator. In the experi-
ments of Ref. [21], both the pump and cavity were red
detuned from the atomic transition and hence U was
considered negative for the observed Dicke phase tran-
sition. a(a') is the annihilation (creation) operator of
the optical mode while b(b') representing the same for
the mechanical mode, following the commutation relation
[a(b),at(bT)] = 1. S,,S_ and S, are the spin operators
obeying the relation [S;,S_] =25, and [St,S.] = F54.
S = (5;.,5y,5,) is the effective collective spin of length
N/2. The co and counter rotating matter light coupling
has been taken equal throughout the paper and is denoted
by g. The schematic representation of the model consid-
ered in this paper has been shown in Fig. 1.

Fixed mirror Movable mirror

CAVAAVAZ)
y &

Transverse pump

Fig. 1 The schematic representation of the model con-
sidered. One of the mirror is movable under the radiation
pressure of the cavity beams. The optical cavity has a
decay rate of k and the mechanical mirror has a damping
rate I'y,.

In the thermodynamic limit, the semi classical equa-
tions for our system, take the form:

S_ = —i(wq + Ula?)S_ + 2ig(a+a")s, ,

S, = —igla+a")Sy +igla+a")s_,
a=—[k+i(w+US, + 30D +b)]a—ig(Sy +5_),
b= —iwmb—idla®> = Tmb,

—~ o~ o~
w N

T
= = O =

where « and I, are the cavity decay rate and damping
rate of the mechanical mode respectively. We employ the
steady state analysis (S_ = S, = @ = b = 0) of the above
equations to determine the critical atom- cavity coupling
strength. We carry a numerical approach in this paper
to determine the critical value A. (9y/N¢). The analytical
process uses the c-number variables and quantum fluctua-
tions, and one can refer Ref. [34] for the complete process
in the absence of back reaction term. A (gv/N) > X\,
(9+/N.) marks the onset of the superradiance, which was
first observed experimentally by Tilman Esslinger and his
group™! for BEC atoms in 2010.

3 Superradiant Phases and Phase Portraits

To study the dynamics of the present system, we em-
ploy the same mathematical technique as Refs. [22, 27]
and define a = a; + iaz, b = by + ibp and Sy = S, £i5,.
Substituting the same in the above semi classical equa-
tions (Egs. (2)—(5)) and comparing the real and imaginary
parts on both side yields:

(wa + Ulal*)S, =0,

(wq + Ula*)S, — 4ga1 S, =0,

—ka1 + (w+ US, 4+ 260b1)as =0,

6
7

(6)
(7)
(®)
9)

)

kag + (w4 US, + 25pb1)ag + 2¢S, =0, 9
dolalPwm, dolal?T o,

h— _(7‘;“" o ) - 1(7(;'“‘ " ) (10
Fm +wm Fm +w77l

Clearly, from Eq. (6), either S, = 0 or (w,+U]|al?) = 0.
We define the case arising from the first condition as the
superradiant phase A (SRA) and the second condition
as the superradiant phase B (SRB). SRA represents the
quantum phase transition from normal (N) or inverted
(I) states to a self organized state defined by S, and S,
only. Similarly, the SRB represents the transition from
the mixed states (N + I) to a superradiant phase defined
by all the components of §. The difference of transition
from mixed states (N + I) as in SRB phase compared to
from normal (N) or inverted (I) as in SRA phase can
be understood in the phase diagrams. Ofcourse, with
increasing back action parameter, we expect a reduced
phase transition region. Again, SRB phase condition lim-
its U to be only negative, since the phase is defined as
(wa + Ulal?) = 0. However, what might be the effect of
the mechanical mirror motion on the phase transition of
the system? In the absence of the back reaction parameter
U,B4 suggests no change in the critical transition point,
Ac for the SRA phase. However, in the presence of the
back reaction term and in the SRB phase, what role can
the mirror frequency play in defining the phase portraits, a
question to be analyzed in this paper. In the next section,
we shall analyze all the possible conditions and present
the phase portraits of the system for both positive and
negative back reaction parameter.

3.1 SRA Phase

As defined before, S, = 0 marks the SRA phase,
which is simply the transition from normal (N) or inverted
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(I) state to the regime of superradiance. The critical
atom-cavity coupling point can be determined by setting
[Sz, Sy, 5] = [0,0,+£N/2], which signifies the presence of
either spin up (inverted) or spin down (normal) particles
and no photons. The steady state equations (Egs. (6)—
(9)) can be straightforwardly solved using matrix method
for S, which yields a quadratic equation supporting two
roots of S,. The determinant representing the steady state
equations, takes the form:

wa + Ulal? 0 —49S, 0
0 o + Ulal? 0 0
wa + Ulal —0, ()
2g 0 X K
0 0 —K X

where Y = w+US, — {282]a|*w,, /(T'2, +w2,)}. The above
determinant has been solved numerically and the results
are too cumbersome to be reproduced here. The two sup-
porting roots for S, when equated to N /2, and solved for
w, represents the dynamical phase portrait for SRA phase
showing the transition from normal (V) and inverted (I)
phase to regimes of superradiance. An important point to
note here, is that the SRA phase exists for any value of
the back action parameter, U. Although the two roots of
S, must be independent, however, we shall find a small re-
gion in the phase portraits, where both the roots of S, are
satisfied. Such regions have been defined as 2SRA phase,
or more precisely as SRA (N) + SRA (I) phase. The
same also had its existence in Ref. [35], however, in this
paper, we shall find the mirror frequency w,, to determine
the physics of such coexisting regime and we shall exploit
such condition to alter the phase portraits.

3.2 SRB Phase

We define the condition (w, + Ula|?)= 0 as the origin
of the B type superradiance. The same condition when
incorporated in Eq. (7), yields 4gS.a; = 0. Evidently,
this bounds a to be purely imaginary. Correspondingly,
the initial condition also yields:

Wa
_U ) (12)
which again suggests the same nature for a. Hence a; = 0,
which when plugged in Eqs. (8) and (9) yields:

2

Jaf? =

K W
2501\ ?
s2= () (14)

As noted previously, S, = 0 was defined in SRA phase
and in SRB phase S, # 0. Hence, it follows from the
normalization condition that S2 4+ S2 < N?/4, where
the above expressions give the corresponding values, with
Eq. (10) determining the expression for b; and |b|>.

3.3 The Phase Portraits

We finally summarize the phase portraits of the dy-
namical system, with chosen parameters that satisfy the

Routh-Hurwitz criterial®*=%0 for a stable optomechanical
system. We plot the phase portraits as a function of gv/N,
where N is the number of atoms =~ 10°. We consider all
the cases possible through analytical treatment of the dy-
namical equations of the system and it is noteworthy to
mention here that although all these phase regions can be
investigated in various experimental conditions, however,
not all will emerge in a single experiment. The designing
of such a system to observe various phase regions discussed
here is a matter of technological advancement in control-
ling the parameters of the system. Experiments reported
by Baumann et al.*!l showed the system evolving from
normal phase (V) with all spins pointing downwards and
no photons.

Figure 2(a) shows the phase diagram for UN = 0 MHz.
The purple line marks the onset of superradiance from
both normal (N) and inverted (I) states with all spins
pointing downwards and upwards respectively. For w < 0,
the normal state (V) becomes unstable and the inverted
state (I) becomes stable instead. As the backaction pa-
rameter is reduced (UN = —40 MHz), the SRA phase
boundaries (purple line) between the (N) and (I) state
shift to higher and lower frequency respectively. Simul-
taneously, SRB phase (red line) emerges which coincides
with SRA (V) and SRA (I) for negative U as discussed
previously and few new regimes come to play as seen from
Fig. 2(b). The (N) and (I) phase coexists due to the shift
of the SRA boundary and also gives rise to (SRB + N),
(SRB + I) and (SRB + N + I) regions. Due to the fre-
quency shifts induced by negative U, there exists a small
region where SRA (N) and SRA (I) coexists, where both
the roots of S, are supported. These phases are repre-
sented as 2SRA (SRA (N) + SRA (I)) in this paper and
we shall deal with the same in next section.

Although we have portrayed all the possible cases (for
UN = —40 MHz) in Fig. 2(b), not all can be simulta-
neously observed in any single experiment. As reported
by Esslinger and his group,['¥ the first superradiant tran-
sition was observed from inverted state (I) to SRA (In-
verted) which corresponds to the lower symmetrical half
of the phase portrait. The realization of other transitions
is purely dependent on the conditions of the system. Con-
sidering S;, = 0 and the initial state being the normal
state (—N/2 and no photons), the phase transition would
correspond to the SRA (N) denoted by the purple line
on the positive Y axis of Fig. 2(a) and vice versa for sys-
tem prepared with inverted state (N/2) and operated with
negative effective cavity frequency (w). The purple line
marks the phase transition from superfluid to a self orga-
nized state and as seen from the figure, the critical tran-
sition point increases as the effective cavity frequency (w)
is increased. This also supports the analytical results in
Refs. [21, 31, 34-35, 38] which showed the critical point
at (1/2)((wa/w) (K% + w?))/2 for U = 0.
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Fig. 2 (Color online) Dynamical phase portrait of the

stable attractors as a function of effective cavity fre-
quency w and gv/N. The panels represent plots for UN =
0 MHz, —40 MHz, and 40 MHz. Other parameters chosen
were wm = 1, w, = 0.05 MHz, x = 8.1 MHz,[21:3%38]
and 8o = 0.05 and T, = 0.05w,.

Interestingly, as we reduce the back reaction param-
eter U (Fig. 2(b)), the SRA phase boundary shifts to-
wards each other by £UN/2 so as to offer an identical
superradiant phase (area covered between the purple lines
and black horizontal lines (at £UN/2) in Fig. 2(b)). Al-
though we can never witness both the transitions in a
single experiment, however, theoretical study predicts an
identical superradiant phase when operated with effective
cavity frequency ranging between £UN/2 MHz and ini-
tial state being normal or inverted. In simple words, for

UN = —40 MHz we can predict an identical phase tran-
sition when operated with —20 < w < 20 MHz without
worrying whether we started from normal (N) or inverted
(I) state. Thus we can start from any mixed state config-
uration (i.e. a combination of spin up (/) and spin down
(N)) and still expect to get a phase transition if UN is
negative. This is analogous to the case of preparing mixed
atoms with 50% spin up and 50% spin down and still get
an identical superradiance as in two atom Dicke model.!4!
The advantage lies in the fact that with negative back ac-
tion parameter, we get a short window of selecting our
effective cavity frequency (—UN/2 < w < 4+UN/2) and
worry not about the initial condition (N or I) to observe
a Type A superradiance. The comparison becomes evi-
dent when we see Fig. 2(a), which showed phase transition
only when the system is operated and prepared in a com-
bination of either positive w and Normal state (+w, N) or
negative w and Inverted state (—w,I). Thus a negative
variation of U gives us a freedom to choose our effective
cavity frequency (w) and initial state.

As the backaction parameter is made positive (UN =
40 MHz), the SRB phase vanishes for obvious reasons dis-
cussed previously. The SRA (N) and SRA (I) shift away
from each other by 2UN/2 as seen from Fig. 2(c). The
separation of the boundaries in opposite direction leads
to the formation of another region termed here as per-
sistent oscillation regime. Evidently, no phase transition
can be observed when the system is operated with effec-
tive cavity frequency (w) between £UN/2. As the name
suggests, this regime describes persistent oscillation and
no steady state is reached even for long duration experi-
ments, thereby predicting the presence of limit cycle. The
notion of persistent oscillation will become clear in time
evolution section when we shall simulate the system with
initial conditions described by point (C'), which lies in the
concerned region.

We observe the type B superradiance only when (w, +
Ula|?) = 0 i.e. when U is negative since w, > 0. The
critical line separating the superfluid and self organized
state has been denoted with red colour in Fig. 2(b). The
SRB imposing condition (S2 + 5% < N?2/4) itself reveals
the fact that it can take both £N/2 (i.e. both Normal
(N) and Inverted (I) state), which marks its appear-
ance between £UN/2 in the phase portraits. Thus when
UN = —40 MHz, and we have an initial mixed state con-
figuration (N +1) and effective cavity frequency (w) being
operated between +20 MHz, we can get either a Type A
superradiance or a Type B superradiance depending on
whether S, = 0 or (w, + Ula|?) = 0 respectively but never
both simultaneously in a single experiment.

4 2SRA Phase

In this section we aim to discuss the role of the mechan-
ical mirror in defining the phase portraits of the system.
As hinted previously, there are regions where both the



No. 1

Communications in Theoretical Physics 43

roots of S, are supported and the SRA (V) and SRA (1)
regions coincides to describe the new phase. Although ev-
ident from previous discussion that the mirror frequency
plays no role in defining the SRA region, however, the
SRB phase does have an explicit dependency on w,, as
seen from Egs. (13) and (14), together with Eq. (10) for
the expression of b;. We produce here a magnified view
of the dynamical phase diagram for UN = —30 MHz and
determine the variation in transition point for different
values of wy,. Interestingly, the 2SRA phase is no more
distinct as in the case of a fixed mirror®®38 and in the
optomechanical case, the mirror frequency determines the
physics of this tricritical point where all the phase bound-
aries cross each other.

15.4 F(a) UN = —30 MHz
PN SRA (N) wm=0.2
15.0
4N SRA(N)+1
w
14.6 f
14.2¢ No 2SRA (SRA (N) + SRA (I)) phase |
2 3 4 5
gV N
15.4 - (b) UN = —30 MHz 1
N SRA (N) wWm=0.4
15.0
SRA (N) + I
w [ I+ N
14.6 |
142 / SRA (N) + SRA (I)
2 3 4 5
gV N
15.4%(0) UN = —30 MHz 1
- N SRA (N) wm=0.8
15.0
w 4N | SRA(N) +1
14.6
14.2] / SRA (N) + SRA (I) ]
2 3 4 5

Fig. 3 Magnified view of the dynamical phase diagram
for UN = —30 MHz for w,, = 0.2, 0.4, and 0.8 for (a),
(b), and (c) respectively. Parameters chosen are same as
in the previous plots.

For wy, = 0.2, Fig. 3(a) shows no 2SRA region and the
same starts becoming prominent as the mirror frequency
Wy, 1s increased as seen Figs. 3(b) and 3(c). The mirror
is therefore found to be altering the coexisting regime, for
experimentally realizable values of the mirror frequency.
These optical systems with a movable cantilever can there-
fore be efficiently used for controlling the crtitical point
and also the coexisting regime. With these plots, the effect
of the mirror frequency can be well established. However,
we may demand to alter the phase portraits more since the
change with the mechanical mirror is almost negligible for
any use as in experimental phenomenon like quantum en-
tanglement or manipulation etc. So can we devise and
conceive any further modification to the system that can
allow further manipulation of the critical transition point.
We shall deal with the same in Sec. 6, with an aim of
modifying the phase diagrams by some easy controllable

parameter.

5 Time Evolution

In order to get insight on the distinction between the
described phases, we examine the time evolution of the
system from various initial conditions lying in different
phase regions. We mainly consider the points (A4), (B)
and (C) marked in the dynamical phase diagrams (Fig. 2)
which lies in the (SRB +N + I), SRA and persistent os-
cillation regime respectively. We solve the semiclassical
equations of the system numerically for S, Sy, and S,
by fourth order Runge Kutta method and illustrate the
relaxation time in reaching their corresponding stable at-
tractors. Figure 4 shows the time evolution of the system
from different initial conditions.

Figure 4(a) shows the time evolution for point (A)
(UN = —40 MHz) and point (B) (UN = 40 MHz) in
the superradiant regime that are close to the normal and
inverted state. The plot well describes the relaxation time
for reaching their stable attractors. For point (A), S, ini-
tially increases and finally attains a stable value in ap-
proximately 0.7 ms thereby prediciting a stable case for
realistic experiments. Point (B) lies in the SRA (N) re-
gion just above the persistent oscillation region and the
time evolution of S, (blue curve) shows the system reach-
ing their stable attractors in approximately 0.7 ms. As
the initial condition enters the oscillation regime (point
(), all the system parameters (S,,S,) start to oscillate
periodically at long times and no stable points are reached
even after long duration as shown in Fig. 4(b). Since the
motion is described in a two-dimensional plane, the at-

(42]

tractors represent a simple limit cycle,!** thereby tagging

the entire bounded plane as persistent oscillation regime.
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Fig. 4 Time evolution of the system from different ini-
tial condition. The top panel describes the point (A) and
point B) of Fig. 1 and the lower panel shows the per-
sistent oscillations predicting a limit cycle in persistent
oscillation regime for positive back action parameters.
Other parameters used are same as in previous plots.

6 Dicke Model in the Presence of An External
Pump

We modify our previous model by adding an external
mechanical pump, which can be any external object in
physical contact with the mirror or an external laser that
is capable of changing the mirror frequency via radiation
pressure. The pump can excite the mirror by coupling
The Hamilto-

nian of the new system, takes the form (A = 1 throughout
[34,43]

with the mirror fluctuation quadratures.

the paper)

H = w,S. +wala+ wyb'b+ dpala(b+ bh)

+gla+a")(Sy +5)+US.ala+n,b+0bh), (15)

where 7, represents the mechanical pump frequency and
the last additional term describes the energy due to it.
The mechanical pump frequency will be considered to be
small here, i.e. 0 < n, < 1. To proceed further, we begin
with the semiclassical equations, of which the following
equations gets modified:

b= —iwmb—idplal® — in, — Tpb. (16)

I UN = —20 MHz

20 -, _ ]
=05 2SRA (N)
w 0 SRA (N)+ SRA (1)+n SRA(N)+ nSRA(I)
(1)
—20 -
0 1 4 5
20 :

n—SRB

x

+ UN = —-20 MHz

w 0r SRB + 7SRB
[ n—SRB
—20 - - P - - -
0 1 2 3 4 5
gV N

Fig. 5 The dynamical phase diagram in the presence
of the external mechanical pump. UN = —20 MHz and
np = 1. Other parameters are same as in previous plots.

We repeat the same analysis to determine the dynam-
ical phase diagram of the system in the presence of the
mechanical pump for both SRA and SRB phase. We pro-
duce here the dynamical phase portraits for SRA and SRB
separately in Fig. 5 to unveil the effect of the mechanical
pump. The dotted lines in both the plots of Fig. 5 marks
the SRA and SRB phase boundaries in the absence of
the mechanical pump and the bold curve represents the
phase portrait when the external mechanical pump starts
working. The blue shaded region named 7- SRA and 7-
SRB represents the extra region created by the external
mechanical pump. Clearly, the shaded region decreases
the critical transition point both in positive and negative
direction symmetrically. Although the external mechan-
ical pump has changed the dynamical phase diagram to
a large extend, the physics behind the time evolution re-
mains almost same as in previous case with minor change
in the relaxation time. The external mechanical pump
frequency 7, also enhances the 2SRA region to a large ex-
tend since both the SRA and SRB phase shows consider-
able increase in phase area. We do not produce these plots
as these remains evident from the plots of Fig. 4. Thus
it is clear from the discussion in this section and Sec. 4
that the phase portraits can be altered and enhanced by
a simple modification. Although the SRA phase region is
unaltered by mirror frequency initially, the same can be
modified when we add external force to the mirror. These
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systems can be used for altering the phase transition in
Dicke model by simple controllable parameters like the
external mechanical pump. Such can find use in experi-
ments like detecting quantum entanglement, which tends
to infinity at the critical point.[*4

7 Conclusion

In this paper, we have explored the dynamics of an
optomechanical system with ultracold atoms between the
optical cavities. Within the framework of non equilibrium
Dicke model, we present the rich phase portrait of at-
tractors, including regimes of coexistence and persistent
oscillations. We conclude from the analytical methods
that the optomechanical system remains handy over an
optical system in terms of control over phase transition
and dynamical phase regions. The cantilever was found
to be enhancing the coexisting region to a large extend
and the persistent oscillation regime predicted the exis-

tence of limit cycle that prohibits reaching any stable
state even in very long duration experiments. To study
the system further, we add an external mechanical pump
and find the external pump enhancing both the SRA and
SRB phases thereby predicting an enhancement even in
coexisting regions. We thereby predict a system that al-
ters the phase transition in a Dicke model through a sim-
ple and effective process. Such system can also be used
to study the dynamical entanglement in different regimes
in the presence and absence of mechanical pump which
can be used as a tool to selectively modify and alter the
entanglement!44~8 between the modes. 4]
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