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Head-on Collision of Ion-acoustic Multi-Solitons in e-p-i Plasma
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Abstract The propagation and interaction between ion acoustic multi-solitons in an unmagnetized multicomponent
plasma consisting of fluid hot ions, positrons and both hot and cold electrons, are investigated by employing the extended
Poincare–Lighthill–Kuo (PLK) method. Two different Kortewege-de Vries (K-dV) equations are derived. The Hirota’s
method is applied to get the K-dV multi-solitons solution. The phase shift due to the overtaking and head- on collision
of the multi-solitons is obtained.
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1 Introduction

Nonlinear partial differential equation is frequently
used to model various important phenomena and dynami-
cal processes in physics, mechanics, chemistry and biology.
Seeking for exact solutions of these evolution equations
may play an important role in nonlinear theory, partic-
ularly in soliton theory. To analyze complete integrable
evolution equations one may use various powerful method
like the inverse scattering method, the Backlund transfor-
mation method, the Darboux transformation method, the
Hirota bilinear method, etc. that help in deriving multiple-
soliton solutions of these equations. The Hirota bilinear
method[1] is one of such methods for the determination of
multiple soliton solutions. It is a direct method for a wide
class of nonlinear evolution equation. It also determines
the multiple singular soliton solutions.

The ion acoustic wave (IAW) is one of the most im-
portant nonlinear waves in plasma physics. Washimi and
Taniuti[2] have been the first to enlighten on the fact that
the propagation of IAWs in a collision-free plasma can be
described by the Korteweg-de-Vries (K-dV) equation. The
K-dV equation has both solitary wave solutions as well
as cnoidal wave solutions in collisionless plasmas without
the dissipation and geometry distortion. The reductive
perturbative technique (RPT) is generally used to study
weakly nonlinear solitary waves and double-layers in plas-
mas. Many investigators have investigated IA solitary
waves (IASWs) in the frame of the Korteweg-de-Vries (K-
dV), Kadomtsev–Petviashvili (KP), Zakharov–Kuznetsov
(ZK) equations.

Electron-positron (e-p) plasmas, composed of particles
of the same mass and opposite charges, are believed to
have existed in the early universe.[3−4] They are com-

mon in the active galactic nuclei,[5−6] in the polar re-
gions of neutron stars,[7] in the inner regions of the accre-
tion disks surrounding black holes,[8] at the center of our
galaxy,[9] in pulsar magnetospheres[7] and plasma heating
by intense lasers fields.[10] Nowadays, it has been shown
that positrons can be produced in tokamarks due to col-
lisions of runaway electrons with plasma ions or thermal
electrons.[11] The fast runaway electrons are the result of
disruptions in tokamarks for instance, in the Joint Euro-
pean Torus (JET)[12] and JT-60U.[13] Since in many as-
trophysical environments there exists a small number of
ions with the electrons and positrons, therefore, it is im-
portant to study linear and nonlinear behavior of plasma
waves in e-p-i plasmas. A lot of research has been car-
ried out to study the e-p and e-p-i plasmas in the past
few years.[14−18] For instance, Moolla et al.[19] investi-
gated nonlinear low frequency structures in e-p-i plasma.
Baluku and Hellberg[20] investigated the effect of nonther-
mal electrons on IASWs in an e-p-i plasma. Paul et al.[21]

studied IASWs in an e-p-i plasma.
The aim of the present paper is to investigate the in-

teraction of IA solitons in an e-p-i plasma having two dis-
tinct kinds of thermal electrons, with either isothermal
or adiabatic fluid ions. It is a well established fact that
solitons are solitary waves with the remarkable property
that the solitons preserve their form asymptotically even
when they undergo a collision. The terminology “Soliton”
was first pioneered by Zabusky and Kruskal.[22] The fun-
damental “microscopic” properties of solitons interaction
are (i) Soliton collisions are elastic, i.e., the interaction
does not change the soliton amplitudes; (ii) After the in-
teraction, each soliton gets an additional phase shift; (iii)
The total phase shift of a “trial” soliton acquired during a
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certain time interval can be calculated as a sum of the “el-
ementary” phase shifts in pairwise collisions of this soliton
with other solitons during this time interval. Overtaking
collision and head-on collision are two distinct types of
interaction between the solitons in a one-dimensional sys-
tem. The head-on collision[23] where the angle between the
two propagation directions of the two solitons is equal to π
has been studied by many researchers.[24−28] The head-on
collision between two IASWs has been studied making use
of the extended Poincare–Lighthill–Kuo (PLK) method.
The resonance phenomena can be interpreted by the soli-
tary wave solutions of two K-dV equations and this has
been observed in shallow water wave experiments,[29] plas-
mas experiments,[30] two core optical fiber[31] and fluid
filled elastic tubes.[32] In overtaking collisions, the angle
between the two propagation directions of the two solitons
is equal to zero. The overtaking collision has been studied
by the inverse scattering transformation method.[33] Two-
solitons solution represents the interaction of two solitary
waves. It can be written in a form such that its rela-
tionship to the solitary wave is clearly apparent, and the
utility of this special formulation of the solution can be
demonstrated in analyzing the structure during interac-
tion of the two-soliton solution of the K-dV equation. Af-
ter the collision between two solitons with different am-
plitude, the largest one overtakes the smaller. When the
solitons have different amplitudes and thus different veloc-
ities, they will be ultimately separated in space. Several
researchers[34−35] have investigated the head- on collision
and related phase shift of different solitary waves in dif-
ferent plasma models.

2 Basic Equations

Let us consider an unmagnetized multicomponent
plasma having fluid ions, positrons, cold electrons and hot
electrons of density ni, np, nec, and neh, respectively. The
dynamics of the nonlinear IAWs is governed by the fol-
lowing normalized equations

∂ni

∂t
+

∂(niui)

∂x
= 0 , (1)

∂ui

∂t
+ ui

∂ui

∂x
= −∂φ

∂x
− σ

ni

∂p

∂x
, (2)

∂p

∂t
+ ui

∂p

∂x
= −γp

∂ui

∂x
, (3)

∂2φ

∂x2
= neh + nec − αnp − (1 − α)ni , (4)

where ui, p, and φ are the ion fluid velocity, the ion fluid
pressure and the electrostatic potential respectively. The
variables t, x, ni, ui, and φ are normalized by the ion
plasma frequency ωpi =

√

4πne0e2/mi, the Debye length

λD =
√

Teff/4πne0e2, the unperturbed equilibrium ion

density ni0, the ion acoustic speed Cs =
√

Teff/mi, and
Teff/e, respectively. Here e is the electron charge, mi is
the mass of the ions, Tc is the cold electron tempera-
ture, Th is the hot electron temperature. Moreover, we
define α = np0/ne0, Teff = Tc/(µ + νβ), µ = nec0/ne0,

ν = neh0/ne0, β = Tc/Th, γ1 = Teff/Tp, σ = Ti/Teff. Note
that µ + ν = 1. The densities of the two temperature
electrons and positrons are given, respectively, by

nec = µ exp
( 1

µ + νβ
φ
)

, (5)

neh = ν exp
( β

µ + νβ
φ
)

, (6)

np = exp(−γ1φ) . (7)

Now we assume that two solitons, which are asymptoti-
cally far apart in the initial state travel towards each other.
After some time they interact, collide, and then depart.
We also assume that the solitons have small amplitudes
proportional to ǫ (where ǫ is a small parameter character-
izing the strength of nonlinearity) and that the interaction
between two solitons is weak. Hence we expect that the
collision will be quasi-elastic, and causes only shifts of the
post collision trajectories (phase shift). In order to ana-
lyze the effects of this collision, we employ an extended
PLK method by first scaling the independent variables
through the following new stretched variables

ξ = ǫ(x − λt) + ǫ2P0(η, τ) + ǫ3P1(ξ, η, τ) + · · · , (8)

η = ǫ(x + λt) + ǫ2Q0(ξ, τ) + ǫ3Q1(ξ, η, τ) + · · · , (9)

τ = ǫ3t , (10)

and expand the independent variables in power series of ǫ
as

ni = 1 + ǫ2n
(1)
i + ǫ3n

(2)
i + ǫ4n

(3)
i + · · · , (11)

ui = 0 + ǫ2u
(1)
i + ǫ3u

(2)
i + ǫ4u

(3)
i + · · · , (12)

p = 1 + ǫ2p(1) + ǫ3p(2) + ǫ4p(3) + · · · , (13)

φ = 0 + ǫ2φ(1) + ǫ3φ(2) + ǫ4φ(3) + · · · , (14)

where λ is the unknown phase velocity of the IASWs.
After some long but straightforward calculation,[36] we

get the following K-dV equations

∂φ
(1)
1

∂τ
+ Aφ

(1)
1

∂φ
(1)
1

∂ξ
+ B

∂3φ
(1)
1

∂ξ3
= 0 , (15)

∂φ
(1)
2

∂τ
− Aφ

(1)
2

∂φ
(1)
2

∂η
− B

∂3φ
(1)
2

∂η3
= 0 , (16)

where

A =
αγ2

1 (λ2 − σγ)2

2λ(1 − α)
+

3λ2 + σγ(γ − 2)

2λ(λ2 − σγ)

− (νβ2 + µ)(λ2 − σγ)2

λ(1 − α)(νβ + µ)2
, (17)

B =
(λ2 − σγ)2

2λ(1 − α)
. (18)

Equations (15) and (16) are two side-traveling wave K-dV
equations in the reference frames of ξ and η, respectively.
Their one soliton solutions are given, respectively, by

φ
(1)
1 = φA sech 2

[(AφA

12B

)1/2(

ξ − 1

3
AφAτ

)]

, (19)

φ
(1)
2 = φB sech 2

[(AφB

12B

)1/2(

η +
1

3
AφBτ

)]

, (20)



No. 2 Communications in Theoretical Physics 239

where φA and φB are the amplitudes of the two solitons
in their initial positions. After a head-on collision of the
two solitons, the corresponding phase shifts are given by

△P0 = 2ǫ2
D

C

(12BφB

A

)1/2

, (21)

△Q0 = −2ǫ2
D

C

(12BφA

A

)1/2

, (22)

where

C = 2λ , D = A − 2λ

(λ2 − σγ)
.

(i) Two-Solitons

Each of the K-dV equations given by Eqs. (15) and
(16) may admit a multi-solitons solution. We consider
here the two-solitons solutions of each K-dV equation and
assume that each two-solitons move in the same direction.
The fast moving soliton eventually overtakes the slower
one. Using the Hirota’s method,[37−39] the two-solitons
solutions of Eqs. (15) and (16) are given by

φ
(1)
1 =

12B

A

k2
1 eθ1 + k2

2 eθ2 + a12 eθ1+θ2(k2
2 eθ1 + k2

1 eθ2) + 2(k1 − k2)
2 eθ1+θ2

(1 + eθ1 + eθ2 + a12 eθ1+θ2)2
, (23)

φ
(1)
2 =

12B

A

k2
1 eφ1 + k2

2 eφ2 + a12 eφ1+φ2(k2
2 eφ1 + k2

1 eφ2) + 2(k1 − k2)
2 eφ1+φ2

(1 + eφ1 + eφ2 + a12 eφ1+φ2)2
, (24)

where

θi=1,2 =
ki

B1/3
ξ − k3

i τ + αi ,

φi = − ki

B1/3
η − k3

i τ + αi ,

a12 = (k1 − k2)
2/(k1 + k2)

2 .

Here a12 is related to the phase shifts of the overtaking col-
lision. When τ ≫ 1, the two-solitons solutions of Eqs. (15)
and (16), respectively, transform into the following super-
position of two single-soliton solutions

φ
(1)
1 ≈ 6B

A

[k2
1

2
sech 2

{ k1

2B1/3
(ξ − B1/3k2
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′

1)
}

+
k2
2

2
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{ k2

2B1/3
(ξ − B1/3k2
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2)
}]

, (25)

φ
(1)
2 ≈ 6B

A

[k2
1

2
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}

+
k2
2

2
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. (26)

We see from Eqs. (25) and (26) that we are now dealing
with four solitons, each pair moving in the same direction.
Here ∆

′

i, ∆i = ±(2B1/3/ki) ln |√a12|.
(ii) Three-Solitons

The three-solitons solutions of Eqs. (15) and (16) are
given by

φ
(1)
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∂ξ2
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(1)
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∂2
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where (i = 1, 2, 3)
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i τ + αi .

For τ ≫ 1, the solutions of Eqs. (27) and (28) reduce to a
superposition of three single-soliton as

φ
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3
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where Ai = 3Bk2
i /A are the amplitudes,
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∣

∣
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are the phase shifts of the solitons.

3 Numerical Results

It is seen that the phase shifts ∆1, and ∆2 are of op-
posite signs and both of them are proportional to B1/3,
a result consistent with the one already obtained in the
study of head-on collision of two solitons.[40−41] Note that
B depends on γ (see Eq. (18)). The phase shifts will also
depend on the parameter γ1. In Figs. 1(a) and 1(b), we

have plotted the two-solitons solution φ
(1)
1 vs. ξ for the

several values of τ . At τ = −5, the larger amplitude soli-
ton is behind small amplitude solitary, and at τ = −1
the two solitons merge giving rise to a single soliton at
τ = 0. Finally (τ = 1) they depart from each other. Fig-
ures 2(a) and 2(b) display the solitary potential structure

φ
(1)
1 against ξ for different values of γ1 = Teff/Tp (isother-

mal and adiabatic cases). It can be seen that the am-
plitude of the solitons decreases with increasing γ1. This
is attributed to the fact that the increase in the γ1 pa-
rameter causes the coefficient of the nonlinear term of the
K-dV equation to decrease. It is found that the soliton
with the larger amplitude overtakes the one with smaller
amplitude as time goes on.
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Fig. 1 (a) Variation of the two solitons profiles φ(1) for different values of τ with k1 = 1, k2 = 2, σ = 0.04, β =
0.033, α = 0.3, µ = 0.08, γ1 = 0.06, α1 = 1, α2 = 1, and γ = 1 (isothermal case).(b) Variation of the two
solitons profiles φ(1) for different values of τ with k1 = 1, k2 = 2, σ = 0.04, β = 0.033, α = 0.3, µ = 0.08,
γ1 = 0.06,α1 = 1, α2 = 1, and γ = 3 (adiabatic case).

Fig. 2 (a) The two solitons profiles φ(1) plotted against ξ for different values of γ1 with k1 = 1, k2 = 2, σ =
0.04, β = 0.033, α = 0.3, µ = 0.0008, τ = −5, α1 = 1, α2 = 1, and γ = 1 (isothermal case). (b) The two
solitons profiles φ(1) plotted against ξ for different values of γ1 with k1 = 1, k2 = 2, σ = 0.04, β = 0.033, α =
0.3, µ = 0.0008, τ = −5, α1 = 1, α2 = 1, and γ = 3 (adiabatic case).
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Fig. 3 Variation of the two solitons profile φ
(1)
1 and φ

(1)
2 for different values of τ (isothermal case).



242 Communications in Theoretical Physics Vol. 65

Fig. 4 Variation of the two solitons profile φ
(1)
1 and φ

(1)
2 for different values of τ (adiabatic case).
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Fig. 5 Variation of the three solitons profile φ
(1)
1 and φ

(1)
2 for different values of τ (isothermal case).
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Fig. 6 Variation of the three solitons profile φ
(1)
1 and φ

(1)
2 for different values of τ (adiabatic case).
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The scattering of four solitons is depicted on
Figs. 3(a)–3(i). In Fig. 3(a), we see the positions of the
solitons at τ = −10. The two solitons on the left hand side
are moving to the right and the two solitons on the right
hand side are moving towards the left side. As τ → 0, the
fast solitons on each side overtake their slower partners.
The overtaking can be seen in Figs. 3(c)–3(d). Figure 3(e)
shows the merging of four solitons. Note that Figs. 3(f)–
3(i) are mirror images of Figs. 3(d)–3(a), respectively, as
may be expected. Here each soliton acquires two phase
shift, one due to the head- on collision and the other one
due to the overtaking collision, as predicted by Hirota.
Qualitatively similar results are obtained in the adiabatic
case (Figs. 4(a)–4(i)). The scattering of six solitons is
shown in Figs. 5(a)–5(i). In Fig. 5(a), we see the initial
positions of the solitons at τ = −10. The three solitons

seen on the left hand side are moving to the right and the
three solitons on the right hand side are moving towards
the left. As τ → 0, the fast solitons on each side overtake
their slower partners. The overtaking process is displayed
in Figs. 5(c) and 5(d) leading to a complete merging of
the six solitons (Fig. (5e)). Note that Figs. 5(f)–5(i) are
mirror images of Figs. 5(a)–5(d). Qualitatively similar re-
sults are obtained in the adiabatic case (Figs. 6(a)–6(i)).
Figure 7 displays the variation of the phase shifts ∆ =
∆1 + Q0 against the density ratio α = np0/ne0 for differ-
ent values of γ1 = 10−5, 0.5 and 1 in the isothermal case
(γ = 1). It can be seen that ∆ slightly decreases as α in-
creases. This decrease is more pronounced as γ1 increases.
Qualitatively similar results are obtained in the adiabatic
case (γ = 3) but with a net shift of the curves towards
lower values of α (Fig. 8).

Fig. 7 Variation of the phase shift ∆ = ∆1 + Q0 against the
parameter α for different values of γ1 in the isothermal case.

Fig. 8 Variation of the phase shift ∆ = ∆1 + Q0 against the
parameter α for different values of γ1 in the adiabatic case.

It may be useful to note that solitary structures can
not only be described by fluid theory, but also by phases-
space holes of particles. The latter has gained increasing
importance in the dynamics of collisionless plasmas. They
produce structure of the phase-space distribution and con-
tribute to dissipation of the free plasma energy giving rise
to conditions for different instabilities. Electron holes were
originally proposed by Bernstein et al.[42] as a nonlinear
solution of the non magnetized Vlasov–Maxwell system
and they showed that, by adding appropriate numbers
of particles trapped in the potential-energy troughs, ar-
bitrary traveling wave solutions can be constructed. The
dynamics of electron holes has been studied in properly
designed numerical simulations.[43−45] It has been demon-
strated that the generation mechanism of solitons may be
mainly due to the trapping of electrons by the potential
well of the waves as shown by the holes that are formed
in phase-space plots.

4 Summary

To conclude, we have investigated the propagation and

interaction of multi-IA solitons in a plasma consisting

of fluid hot ions, positrons and both hot and cold elec-

trons. We have mainly considered collisions of multi-

solitons (four, six) using a two step method. We have

first derived two different K-dV equations using the PLK

method, and then extracted the multi-solitons solution for

each K-dV equation using the Hirota approach. The scat-

tering of four and six solitons have then been analyzed

and discussed. In the isothermal case, the phase shift due

to the head-on collision and overtaking collision slightly

decreases as the density ratio α = np0/ne0 increases. This

decrease is more pronounced as γ1 = Teff/Tp increases.

Qualitatively similar results are obtained in the adiabatic

case but with a net shift of the curves towards lower values

of α.
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