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Abstract This paper contains two main contents. In the first part, we provide two counterexamples of monogamy in-
equalities for the squared entanglement negativity: one three-qutrit pure state which violates of the He–Vidal monogamy
conjecture, and one four-qubit pure state which disproves the squared-negativity-based Regula–Martino–Lee–Adesso-
class strong monogamy conjecture. In the second part, we investigate the sharing of the entanglement negativity in
a composite cavity-reservoir system using the corresponding multipartite entanglement scores, and then we find that
there is no simple dominating relation between multipartite entanglement scores and the entanglement negativity in
composite cavity-reservoir systems. As a by-product, we further validate that the entanglement of two cavity photons is
a decreasing function of the evolution time, and the entanglement will suddenly disappear interacting with independent
reservoirs.
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1 Introduction
Measures of entanglement have played a key role in the

quantum information processing. Given a wave function
of two subsystems A and B, the von-Neumann entropy
of the reduced density matrix ρA is used to quantify the
amount of bipartite entanglement.[1] However, the calcu-
lation of the entanglement for mixed states is generally
difficult due to the convex roof extension. To fill the im-
portant gap in the study of mixed-state entanglement, Vi-
dal and Werner[2] presented the entanglement negativity
N̄AB = (||ρTA

AB ||1− 1)/2, where the symbol TA means par-
tial transpose with respect to the subsystem A, and the
trace norm ||X||1 = tr

√
X†X. The entanglement mono-

tone can be computed effectively for mixed-state entangle-
ment, and it can also be used as a tool for understanding
multipartite entanglement. In order for any maximally
entangled state in 2⊗ 2 systems to have the negativity 1,
it can be reexpressed as[3]

NAB = ||ρTA

AB ||1 − 1 , (1)

with only a change of the constant factor 2.
Different from classical correlations, entanglement can-

not be freely shared among multipartite states.[4] The
monogamy relation is a fundamental property of mul-
tipartite entanglement states, and has been a research
highlight.[5−11] For all m-qubit states ρA1A2···Am , Ou and
Fan[3] analytically proved that the squared entanglement
negativity obeys the following monogamy relation

N2
A1|A2···Am

≥ N2
A1A2

+ · · ·+N2
A1Am

, (2)

where A1 is the focus qubit. Recently, He and Vidal[12]

numerically verified the validity of Eq. (2) for randomly
hundreds of states in n ⊗ n ⊗ n (n = 2, 3, and 4) sys-
tems, and then made a conjecture that the monogamy
inequality (2) should be valid for arbitrary tripartite sys-
tems (i.e., the He–Vidal conjecture). On the other hand,
for four-qubit states, the difference between left and right-
hand sides of the conventional Coffman–Kundu–Wootters
inequality[13] just gives a rough indicator of all the mul-
tipartite entanglement score not distributed in pairwise
form. To extend and sharpen these existing monogamy
inequalities, Regula et al.[14] defined a strong monogamy
relation for tangles

τ
(1)
A1|A2···Am

≥
m−1∑
n=2

∑
−→
j n

τ
(n)
A1|Ajn

1
|···|Ajn

n−1

, (3)

where the index vector j⃗n = (jn1 , . . . , j
n
n−1) spans all

the ordered subsets of the index set {2, . . . ,m} with
(n − 1) distinct elements. They verified it on arbitrary
four-qubit pure states. Further, they conjectured that
other entanglement measures (e.g., the entanglement neg-
ativity), which satisfy conventional monogamy relations,
would also obey the strong monogamy inequality for arbi-
trary four-qubit states (i.e., the squared-negativity-based
Regula–Martino–Lee–Adesso-class conjecture).

In this paper, we present two counterexamples for the
squared entanglement negativity, where the first one dis-
proves the He–Vidal monogamy conjecture on some three-
qutrit systems, and the second one negates the Regula–
Martino–Lee–Adesso-class strong monogamy conjecture
on some four-qubit states. Moreover, we apply the strong
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monogamy score to a practical dynamical procedure of a
composite system,[15] which is composed of two entangled
cavity photons being affected by the dissipation of two
individual L-mode reservoirs.

2 A Counterexample for the He–Vidal Con-
jecture
He and Vidal[12] conjectured that the squared entan-

glement negativity is always monogamous for arbitrary
tripartite systems. They numerically verified the conjec-
ture and claimed that there does not exist any counterex-
amples violating of it.

In this section, we will show that the generalized
Aharonov state

|Ψ⟩ABC = a|012⟩ − b|021⟩+ c|120⟩ − d|102⟩
+ e|201⟩ − f |210⟩ , (4)

where |a|2 + |b|2 + |c|2 + |d|2 + |e|2 + |f |2 = 1, will violate
the He–Vidal monogamy conjecture in 3⊗ 3⊗ 3 systems.

For the standard Aharonov state, a = b = c = d =
e = f = 1/

√
6. It violates the original Coffman–Kundu–

Wootters inequality for the squared concurrence C2,[16]

since C2
A|BC = 1.3333 < C2

AB +C2
AC = 2.[17] According to

Eq. (1), we have N2
A|BC = 0.8889 > N2

AB+N2
AC = 0.3395,

then the squared entanglement negativity satisfies the
monogamy relation (2). However, the result cannot be
always true for the general Aharonov state.

Fig. 1 (Color online) The three-qutrit states in Eq. (4)
violate the monogamous relation for the larger e or f ,
where the monogamy score is N2

A|B|C in Eq. (4). When
the highest dimension of the focus particle becomes big-
ger, the violation degree of the monogamous relation is
stronger.

In three-qutrit systems, we have randomly generated
104 generalized Aharonov states and computed both sides
of Eq. (2). The monogamy score

N2
A|B|C = N2

A|BC −N2
AB −N2

AC (5)

as a function of e is shown in Fig. 1. Our numerical results
are diminishingly consistent with the exact monogamy re-
lation (2) for the smaller e, and the tendency becomes
more acute, i.e., most randomly generated states concen-
trate on the saturation line N2

A|BC = N2
AB + N2

AC when
e infinitely tends to a threshold. However, all randomly

generated states go away from the saturation line for the
bigger e, and the multipartite entanglement scores are al-
most increasing functions of e.

Consequently, we can easily find counterexamples of
the He–Vidal conjecture as follows. Let a, b, c, d ∈ [0, 1),
e = 0.6 and |f | =

√
1− a2 − b2 − c2 − d2 − e2.

According to Eq. (1), we have N2
A|B|C = −8.0818, then

the inequality (2) is violated.

3 A Counterexample for Regula–Martino–
Lee–Adesso-class Conjecture and Its Dy-
namical Procedure
In Ref. [14], Regula et al. proposed and investigated a

set of sharper monogamy constraints. They raised the in-
tuitive Regula–Martino–Lee–Adesso-class conjecture that
the monogamy score from Eq. (2) is amenable to a fur-
ther decomposition into individual m-qubit contributions
in all possible combinations encompassing the focus qubit
A1. This leads them to postulate a strong monogamy in-
equality limiting the distribution of the squared tangle τ2

in m-qubit systems, which generally takes the following
form (for the four-qubit states ρABCD):

τ2A|BCD ≥ τ2AB+τ2AC+τ2AD+τ2A|B|C+τ2A|B|D+τ2A|C|D , (6)

where τ2A|B|C = τ2A|BC − τ2AB − τ2AC can be used to detect
the genuine tripartite entanglement.

For the tangle-based entanglement score, these strong
monogamy entanglement scores obey the following rela-
tion:

τ2A|B|C|D = τ2A|B|CD − τ2A|B|C − τ2A|B|D , (7)

where τ2A|B|C|D is the difference between left and right-

hand sides of Eq. (6), and is a genuine multipartite en-
tanglement score for the four-partite cases of any four-
qubit state. However, these monogamy scores obey an-
other relation[18] as follows,

△τ2A|BCD = τ2A|B|CD + τ2A|C|D , (8)

where △τ2A|BCD = τ2A|BCD − τ2AB − τ2AC − τ2AD for any
four-qubit state.

In this section, we will similarly define the multipartite
entanglement scores based on the squared entanglement
negativity N2 and discuss their properties.

3.1 A Counterexample for Squared-Negativity-
Based Regula–Martino–Lee–Adesso-class
Conjecture

The Regula–Martino–Lee–Adesso-class strong mono-
gamy conjecture has been extensively verified[14] for arbi-
trary four-qubit pure states when the bipartite entangle-
ment is the tangle. It is still an unsolved problem of how
to characterize the entanglement structure in this kind of
states for the squared negativity. That is to say, we will
discuss whether or not the following strong monogamy re-
lation

N2
A|BCD ≥ N2

AB +N2
AC +N2

AD +N2
A|B|C +N2

A|B|D

+N2
A|C|D , (9)
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is always true. The inequality is denoted as the
squared-negativity-based Regula–Martino–Lee–Adesso-
class monogamy. Now, we similarly apply the difference
N2

A|B|C|D from left and right-hand sides of Eq. (9) to
a practical dynamical procedure of a composite system
which is composed of two entangled cavity photons be-
ing affected by the dissipation of two individual L-mode
reservoirs. In fact, the entanglement distribution and the
two-qubit residual entanglement, in a composite system
consisting of two cavities interacting with independent
reservoirs, was firstly analyzed by Bai et al.[19] Taking
the negativity as a measure of entanglement, Wang et
al.[20] recently proved that the squared-negativity obey
the monogamy inequality in 2⊗ 2⊗ 4⊗ 4 cavity-reservoir
systems.

The interaction of a single cavity-reservoir system is
described by the Hamiltonian[15]

Ĥ = ~ωâ†â+ ~
L∑

k=1

ωk b̂
†
k b̂k + ~

L∑
k=1

gk(âb̂
†
k + b̂kâ

†) . (10)

Let the initial state be

|Ψ0⟩ =
(√

1

3
|00⟩+

√
2

3
|11⟩

)
AB

|00⟩CD , (11)

where the initial two cavity photons AB are entangled
and the dissipative reservoirs C and D are all in the vac-
uum states. Then the output state of the cavity-reservoir
system has the form[12]

|Ψt⟩ =
√

1

3
|0000⟩ABCD +

√
2

3
[K2(t)|1100⟩

+K(t)
√
1−K2(t)|1001⟩

+
√
1−K2(t)K(t)|0110⟩

+ (1−K2(t))|0011⟩]ABCD , (12)

where K(t) = exp(−κt/2) is a monotonically decreasing
function of the evolution time κt.

According to Eq. (2), we know that the squared nega-
tivity in multiqubit systems is monogamous. However,
we will show here that it may be violate the strong
monogamy relation. These relations can be seen from
Fig. 2, which means the squared-negativity-based Regula–
Martino–Lee–Adesso-class strong monogamy conjecture
does not always hold for the squared entanglement nega-
tivity.

As a by-product, an intriguing relation among these
multipartite entanglement scores will be derived. For
N2

A|B|C|D, these multipartite entanglement scores obey
the following relation

N2
A|B|C|D = N2

A|B|CD −N2
A|B|C −N2

A|B|D . (13)

Then we obtain that

N2
A|B|CD < N2

A|B|C +N2
A|B|D (14)

for |Ψt⟩. Then these genuine tripartite entanglement
scores based on N2 are subadditive.

3.2 Counterexample’s Dynamical Procedure

For |Ψt⟩ in Eq. (12), the entanglement dynamical
property has been discussed in Refs. [14–15, 21] when
the entanglement measure is quantified by the tangle.
However, the multipartite entanglement analysis is mainly
based on some specific bipartite partitions in which each
party can be regarded as a logic qubit. When either of the
parties is not equivalent to a logic qubit, the characteri-
zation for multipartite (strong) entanglement structure is
an open problem. Fortunately, in this case, we can utilize
the entanglement negativity to indicate the genuine mul-
tipartite entanglement. For four-qubit states, this kind of
entanglement scores in Eq. (13) can be used to detect the
genuine four-partite entanglement, which does not come
from two-qubit and three-qubit pairs.

Fig. 2 (Color online) The 4-qubit states in Eq. (12)
obey the monogamous relation (as shown on the above
curve). However, they violate the strong monogamy (as
shown on the below curve) for the multipartite entangle-
ment score from Eq. (9).

In Fig. 2, we plot the monogamy properties of the
squared negativity as functions of the parameter K(t),
which is a decreasing functions of the evolution time κt.
It can be found that the squared entanglement negativity
is monogamous, whereas it always violates strong monog-
amous in the four-qubit state. By analyzing the multipar-
tite entanglement structure, we can know how the initial
cavity photons entanglement transfers in the multipartite
cavity-reservoir system, which provides the necessary in-
formation to design an effective method for suppressing
the decay of cavity photons entanglement.

From Fig. 3(a), we find that in the evolution proce-
dure, the entanglement negativity abruptly becomes zero
and remains zero for any other time. However, sudden
birth of the negativity arises between the first reservoir
and the first cavity photon, and the entanglement is al-
ways continuous change as shown in Fig. 3(b). Similar
behavior has theoretically been reported in Refs. [8, 14]
for other entanglement measures.
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Fig. 3 (Color online) (a) The entanglement negativity for the two cavity photons as a function of the evolution time
t. (b) The negativity between the first particle and the first cavity as a funtion of t.

When t ∈ (0, 0.15), we can numerically find that
these four-partite entanglement scores ∆N2

A|BCD and

|N2
A|B|C|D| are all monotonically increasing function of

the bipartite entanglement N2
A|BCD, where ∆N2

A|BCD =

N2
A|BCD − N2

AB − N2
AC − N2

AD. However, N2
A|BCD and

|N2
A|B|C|D| are all monotonically increasing functions of

N2
AC , and at the same time they are monotonically de-

creasing functions of N2
AB . As a result, there is no sim-

ple dominating relation between multipartite entangle-
ment and few-partite entanglement in composite cavity-
reservoir systems.

4 Conclusion
We firstly investigate the monogamy properties of

the squared entanglement negativity for tripartite higher-
dimension systems, with a counterexample in 3⊗3⊗3 sys-

tems being given by Eq. (4). According to the counterex-
ample, we know that the He–Vidal monogamy conjecture
is not always true. Secondly, the squared-negativity-based
Regula–Martino–Lee–Adesso-class strong monogamy con-
jecture can be violated by the counterexample in Eq. (12).
More specifically, according to Eqs. (2) and (3), we know
that the squared negativity may be always violate strong
monogamous even when it is monogamous. As a by-
product, we show that the corresponding genuine tripar-
tite entanglement is subadditive in some four-qubit sys-
tems. Finally, we study the entanglement dynamics of two
cavity photons in the case of independent reservoirs. Our
calculations show that the entanglement between the two
cavity photons will suddenly disappear, and there are no
simple dominating relations between multi-qubit entan-
glement and few-qubit entanglement in some time region.
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