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Abstract The relativistic Dirac equation under spin and pseudo-spin symmetries is investigated for Manning–Rosen
plus quasi-Hellman potentials with tensor interaction. For the first time we consider the Hulthen plus Yukawa for tensor
interaction. The Formula method is used to obtain the energy eigen-values and wave functions. We also discuss about
the energy eigen-values and the Dirac spinors for the Manning–Rosen plus quasi-Hellman potentials for the spin and
pseudo-spin symmetry with Formula method. To show the accuracy of the present model, some numerical results are
shown in both pseudo-spin and spin symmetry limits.
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1 Introduction

Since the early years of quantum mechanics the study

of analytically solvable problems for some special poten-

tials of physical interest has attracted much attention

in theoretical physics. Obtaining analytical solutions of

the Klein–Gordon, Dirac and other wave equations is

one of the interesting problems in high energy and nu-

clear physics. These wave equations are frequently used

to describe the particle dynamics in relativistic quan-

tum mechanics.[1] It is well known that the Klein–Gordon

equation and Dirac equation can always be reduced to

a Schrödinger-type equation specially when the Lorentz

scalar and vector potential are equal. The study of rela-

tivistic effects is always useful in some quantum mechan-

ical systems.[2−3] Therefore, the Dirac equation has be-

come the most appealing relativistic wave equation for

spin-1/2 particles. For example, in the relativistic treat-

ment of nuclear phenomena the Dirac equation is used to

describe the behavior of the nuclei in nucleus and also in

solving many problems of high-energy physics and chem-

istry. For this reason, it has been used extensively to study

the relativistic heavy ion collisions, heavy ion spectroscopy

and more recently in laser-matter interaction (for a re-

view, see Ref. [4] and references there in) and condensed

matter physics.[5−6] The idea about spin symmetry and

pseudo-spin symmetry with the nuclear shell model has

been introduced in 1969 by Arima et al. (1969), Hecht

and Adler (1969).[7−8] Spin and pseudo-spin symmetries

are SU(2) symmetries of a Dirac Hamiltonian with vector

and scalar potentials. They are realized when the differ-

ence, ∆(r) = V (r)−S(r), or the sum, Σ(r) = V (r)+S(r),

are constants. The near realization of these symmetries

may explain degeneracy in some heavy meson spectra

(spin symmetry) or in single-particle energy levels in nu-

clei (pseudo-spin symmetry), when these physical systems

are described by relativistic mean-field theories (RMF)

with scalar and vector potentials.[9] Recently, some au-

thors have studied various-type potentials with a tensor

potential, under the conditions of pseudo-spin and spin

symmetry.[10−11] They have found out that the tensor in-

teraction removes the degeneracy between two states in

the pseudo-spin and spin doublet.[12−13] The pseudo-spin

and spin symmetry appeared in nuclear physics refers to

a quasi-degeneracy of the single-nucleon doublets and can

be characterized with the non-relativistic quantum num-

bers (n, l, j = l+1/2) and (n, l+2, j = l+3/2), where n,

l and j are the single-nucleon radial, orbital and total an-

gular momentum quantum numbers for a single particle,

respectively.[14] In recent time, the study of Dirac equa-

tion and Klein–Gordon equation with exponential-type

potential models has attracted the attention of many re-

searchers in the field.[15−17] The kind of various analytical

techniques have been employed to find the solution of the

Klein–Gordon equation and Dirac equation such as the su-

per symmetric quantum mechanics,[18−19] asymptotic it-

eration method (AIM),[20−21] factorization method,[22−23]

formula method,[24] GPS Method[25−26] and the path

integral method,[27−28] Nikiforov–Uvarov method[27−29]

and others. The Klein–Gordon and Dirac wave equa-

tions are frequently used to describe the particle dynam-

ics in relativistic quantum mechanics with some typi-

cal potential by using different methods.[30] For example,

Kratzer potential,[31−32] Woods–Saxon potential,[33−34]

Scarf potential,[35−36] Hartmann potential,[37−38] Rosen

Morse potential,[39−40] quasi-Hellman potentials[41] and

Manning–Rosen potential.[42−44]
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In this paper, we attempt to investigate analytically

degeneracy in Dirac wave equation for Manning–Rosen

plus quasi-Hellman potentials in the spin and pseudo-spin

symmetry with a tensor potential by using the formula

method. For the first time we consider the Hulthen plus

Yukawa for tensor interaction and we investigate the en-

ergy eigen-values and wave functions. The organization

of this paper is as follows: in Sec. 2, the formula method

is reviewed. In Sec. 3 we review basic Dirac equations

briefly. In Secs. 4 and 5, Dirac wave equation for the spin

and pseudo-spin symmetry of these potentials in the pres-

ence of Hulthen plus Yukawa-like tensor interaction are

presented, respectively. In Sec. 6 we provide results and

discussion. The conclusion is given in Sec. 7.

2 Review of Formula Method

The Formula method has been used to solve the

Schrödinger, Dirac and Klein–Gordon wave equations for

a certain kind of potentials. In this method the differential

equation can be written as follows:[21]

Ψ′′
n(s) +

(k1 − k2s)

s(1− k3s)
Ψ′

n(s) +
(ζ2s

2 + ζ1s+ ζ0)

s2(1− k3s)2
Ψn(s)

= 0 . (1)

For a given Schrödinger-like equation in the presence of

any potential model which can be written in the form of

Eq. (1), the energy eigen-values and the corresponding

wave function can be obtained by using the following for-

mulas, respectively.[21][
k24 − k25 − [ 1−2n

2 − 1
2k3

(k2 −
√
(k3 − k2)2 − 4ζ2)]

2

2[ 1−2n
2 − 1

2k3
(k2 −

√
(k3 − k2)2 − 4ζ2)]

]2

− k25 = 0, k3 ̸= 0 , (2)

Ψn(s) = Nns
k4(1− k3s)

k5
2F1

(
− n, n+ 2(k4 + k5)

+
k2
k3

− 1; 2k4 + k1, k3s
)
, (3)

where,

k4 =
(1− k1) +

√
(1− k1)2 − 4ζ0
2

,

k5 =
1

2
+

k1
2

− k2
2k3

+

√[1
2
+

k1
2

− k2
2k3

]2
−

[ ζ2
k23

+
ζ1
k3

+ ζ0

]
. (4)

And Nn is the normalization constant. In the special case

where k3 → 0 the energy eigen-values and the correspond-

ing wave function can be obtained as:[21][ζ1 − k4k2 − nk2
2k4 + k1 + 2n

]2
− k25 = 0 , (5)

Ψn(s) = Nns
k4 exp(−k5s)

× 1F1(−n; 2k4 + k1; (2k5 + k2)s) . (6)

The solutions provide a valuable means for checking and

improving models and numerical methods introduced for

solving complicated quantum systems.

3 Basic Dirac Equations

In the relativistic description, the Dirac equation of

a single-nucleon with the mass moving in an attractive

scalar potential S(r) and a repulsive vector potential V (r)

can be written as:[44]

[−i~cα̂ ·∇̂+ β̂(Mc2+S(r))]Ψnr,k = [E−V (r)]Ψnr,k , (7)

where E is the relativistic energy, M is the mass of a sin-

gle particle and α and β are the 4 × 4 Dirac matrices.

For a particle in a central field, the total angular momen-

tum J and K̂ = −β̂(α̂ · L̂ + ~) commute with the Dirac

Hamiltonian where L is the orbital angular momentum.

For a given total angular momentum j, the eigen-values

of the K̂ are k = ±(j + 1/2) where negative sign is for

aligned spin and positive sign is for unaligned spin. The

wave-functions can be classified according to their angular

momentum j and spin-orbit quantum number k as follows:

Ψnr,k(r, θ, ϕ) =
1

r

[
Fnr,k(r)Y

l
jm(θ, ϕ)

iGnr,k(r)Y
l̃
jm(θ, ϕ)

]
, (8)

where Fnr,k(r) and Gnr,k(r) are upper and lower com-

ponents, Yl
jm(θ, ϕ) and Yl̃

jm(θ, ϕ) are the spherical har-

monic functions. nr is the radial quantum number and m

is the projection of the angular momentum on the z axis.

The orbital angular momentum quantum numbers l and l̃

represent to the spin and pseudo-spin quantum numbers.

Substituting Eq. (8) into Eq. (7), we obtain couple equa-

tions for the radial part of the Dirac equation as follows

by h = c = 1.

{
( d
dr + k

r − U(r))Fnr,k(r) = [M + En,k −∆(r)]Gnr,k(r) ,

( d
dr − k

r + U(r))Gnr,k(r) = [M − En,k +
∑

(r)]Fnr,k(r) ,
(9)

where ∆(r) = V (r) − S(r) and
∑

(r) = V (r) + S(r) are the difference and the sum of the potentials V (r) and S(r),

respectively and U(r) is a tensor potential From Eq. (9), we obtain the second-order Schrödinger-like equation as:{
d2

dr2
− k(k + 1)

r2
+

2kU(r)

r
− dU(r)

r
− U2(r)− [M + En,k −∆(r)]

[
M − En,k +

∑
(r)

]
+

d∆(r)
dr ( d

dr + k
r − U(r))

(M + En,k −∆(r))

}
Fnr,k(r) = 0 , (10)
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{
d2

dr2
− k(k − 1)

r2
+

2kU(r)

r
+

dU(r)

r
− U2(r)− [M + En,k −∆(r)][M − E +Σ(r)]

+

dΣ(r)
dr ( d

dr − k
r + U(r))

(M − En,k +Σ(r))

}
Gnr,k(r) = 0 . (11)

We consider bound state solutions that demand the radial components satisfying Fnr,k(0) = Gnr,k(0) = 0, and

Fnr,k(∞) = Gnr,k(∞) = 0.[45]

4 Spin Symmetry with Tensor Interaction

Under the condition of the spin symmetry, i.e. d∆(r)/dr = 0 or ∆(r) = Cs = const., the upper component Dirac

equation can be written as:[45]{ d2

dr2
− k(k + 1)

r2
+

2kU(r)

r
− dU(r)

r
− U2(r)− [M + En,k − Cs][M − En,k +

∑
(r)]

}
Fnr,k(r) = 0 . (12)

The potential
∑

(r) is taken as the Manning–Rosen[42−43] plus quasi-Hellman potentials.[41]∑
(r) = −A

e−αr

(1− e−αr)
+B

( e−αr

1− e−αr

)2

+ b
e−αr

r2
− a

r
and A = α2 z

q
, B = α2 ν(ν − 1)

q
, (13)

where a, b, z, q, and ν are real parameters, these parameters describe the depth of the potential well, and the parameter

α is related to the range of the potential.

For the tensor term, we consider the Hulthen[46] plus Yukawa potentials,[27]

U(r) = − v0
(1− e−αr)

− v1
r
e−αr , (14)

where v0 and v1 are real parameters, these parameters describe the depth of the potential well, and the parameter α

is related to the range of the potential.

By substituting Eqs. (13) and (14) into Eq. (12), we obtain the upper radial equation of Dirac equation as:{ d2

dr2
− 1

r2
(k(k + 1) + 2kv1 e

−αr + v1 e
−αr + v21 e

−2αr)− 1

r

( 2kv0
(1− e−αr)

+ αv1 e
−αr + 2v0v1

e−αr

(1− e−αr)

)
− v0
(1− e−αr)2

(v0 + α e−αr)− γ − δ
(
−A

e−αr

(1− e−αr)
+B

( e−αr

1− e−αr

)2

+ b
e−αr

r2
− a

1

r

)}
Fnr,k(r) = 0 , (15)

where γ = (M + En,k − Cs)(M − En,k) and δ = (M +
En,k − Cs).

Fig. 1 The behavior approximation for α = 0.07 fm−1.

Equation (15) is exactly solvable only for the case of
k = 0,−1. In order to obtain the analytical solution of
Eq. (15), we employ the improved approximation pro-
posed by Greene and Aldrich[47] and replace the spin-
orbit coupling term with the expression that is valid for
α ≤ 1.[48−49]

1

r2
≈ α2

(1− e−αr)2
. (16)

The behavior of the improved approximation is plotted in
Fig. 1. We can see the good agreement for small α values.

By using the transformation s = exp(−αr), Eq. (15)

brings into the form:

F ′′
n,k(s) +

(1− s)

s(1− s)
F ′
n,k(s)

+
1

s2(1− s)2
[ζ2s

2 + ζ1s+ ζ0]Fn,k(s) = 0 , (17)

where the parameters ζ2, ζ1, and ζ0 are considered as fol-
lows:

ζ2 = − 1

α2
[γ + δA+ δB]− v1(v1 − 1) ,

ζ1 =
1

α2
[2γ + δA]− 1

α
[v0 + δa]− δb− 2v1(ηk + 1) ,

and ηk =
(
k +

v0
α

)
,

ζ0 = − γ

α2
+

1

α
[v0 − δa]− ηk(ηk + 1) . (18)

By comparing Eq. (17) with Eq. (1), we can easily obtain
the coefficients ki (i = 1, 2, 3) as follows:

k1 = k2 = k3 = 1 . (19)

The values of the coefficients ki (i = 4, 5) are also
found from Eq. (4) as below:

k4 =
√
−ζ0, k5 =

1

2
+

√
1

4
− [ζ2 + ζ1 + ζ0] . (20)

With using the energy equation, Eq. (2) for energy eigen-
values we have:



486 Communications in Theoretical Physics Vol. 66

[
−ζ0 − [12 +

√
1
4 − (ζ2 + ζ1 + ζ0)]

2 − b[ 1−2n
2 − 1

2 (1−
√
−4ζ2)]

2

2[1−2n
2 − 1

2 (1−
√
−4ζ2)]

]2

−
[
1

2
+

√
1

4
− (ζ2 + ζ1 + ζ0)

]2
= 0 . (21)

In Tables 1–3, we give the numerical results for the spin symmetric energy eigen-values (in units of fm−1).

Table 1 Energies of the spin symmetry limit in the presence and absence of Hulthen plus Yukawa-like tensor
interaction by parameters M = 10 fm−1, c = 1, h = 1, α = 0.4 fm−1, a = 1 fm−1, b = 1 fm−1, A = 1 fm−1,
B = 1 fm−1, Cs = 5 fm−1.

l n, k > 0
State Es

n,kr Es
n,k n, k < 0

State Es
n,k Es

n,k

(l, j) (v0 = v1 = 0) (v0 = v1 = 0.65) (l, j + 1) (v0 = v1 = 0) (v0 = v1 = 0.65)

1 1, 1 1p1/2 10.420 749 91 10.477 204 23 1,−2 1p3/2 10.420 749 91 10.477 204 23

2 1, 2 1d3/2 10.461 200 66 10.540 918 56 1,−3 1d5/2 10.461 200 66 10.284 251 38

3 1, 3 1f5/2 10.518 134 99 10.614 177 99 1,−4 1f7/2 10.518 134 99 10.417 006 48

4 1, 4 1g7/2 10.587 849 81 10.693 328 44 1,−5 1g9/2 10.587 849 81 10.465 345 94

Table 2 The energy eigen-values (in units of fm−1) for the spin symmetry limit
with parameters M = 10 fm−1, c = 1, h = 1, a = 1 fm−1, b = 1 fm−1, A = 1 fm−1,
B = 1 fm−1, Cs = 5 fm−1.

α/fm−1
Es

n,k (v0 = v1 = 0) Es
n,k (v0 = v1 = 0.7)

1f5/2 1f7/2 1f5/2 1f7/2

0.05 9.868 444 057 9.868 444 057 9.970 462 079 9.910 649 918

0.15 10.087 926 39 10.087 926 139 10.201 824 56 10.070 900 83

0.25 10.280 186 48 10.280 186 48 10.397 859 49 10.214 180 08

0.35 10.445 158 51 10.445 158 51 10.559 883 09 10.345 404 76

0.45 10.585 323 38 10.585 323 38 10.681 993 77 10.473 262 85

0.60 10.804 802 06 10.804 802 06 10.826 955 60 10.640 836 33

0.70 10.848 872 09 10.848 872 09 10.900 282 90 10.737 360 92

Table 3 The energy eigen-values (in units of fm−1) for the spin symmetry limit
with parameters c = 1, h = 1, α = 0.4 fm−1, a = 1 fm−1, b = 1 fm−1, A = 1 fm−1,
B = 1 fm−1, Cs = 5 fm−1.

M/fm−1
Es

n,k (v0 = v1 = 0) Es
n,k (v0 = v1 = 0.75)

1f5/2 1f7/2 1f5/2 1f7/2

5 5.726 086 516 5.726 086 516 5.925 780 211 5.402 801 439

5.5 6.173 902 518 6.173 902 518 6.368 978 458 5.904 500 494

6 6.644 952 191 6.644 952 191 6.822 456 012 6.405 401 297

6.5 6.936 698 707 6.936 698 707 7.283 783 216 6.905 853 985

7 7.431 185 789 7.431 185 789 7.751 206 229 7.406 040 986

8 8.422 512 127 8.422 512 127 8.699 518 849 8.405 984 934

9 9.416 028 092 9.416 028 092 9.660 485 249 9.405 840 187

10 10.411 017 69 10.411 017 69 10.473 996 49 10.405 208 67

Let us find the corresponding wave functions. In reference to Eq. (3) and Eq. (20), we can obtain the upper wave

function as:

F s
n,k(r) = N( e−2αr)(

√
−c)(1− e−2αr)(1/2+

√
1/4+A+B+C)

× 2F1

(
− n, n+ 2

(√
−c+

1

2
+

√
1

4
+A+B + C

)
; 2
√
−c+ 1, e−2αr

)
, (22)

where N is the normalization constant, on the other hand, the lower component of the Dirac spinor can be calculated

from Eq. (23) as:

Gs
n,k(r) =

1

M + Es
n,k

− Cs

( d

dr
+

k

r
− U(r)

)
F s

n,k
(r) . (23)



No. 5 Communications in Theoretical Physics 487

The effects of the Hulthen plus Yukawa-like tensor interactions on the upper and lower components for the spin
symmetry are shown in Figs. 2.

Fig. 2 Wave functions of 1f5/2 in the spin symmetry in the presence and absence of Hulthen plus Yukawa-like tensor
interaction by parameters M = 10 fm−1, c = 1, h = 1, α = 0.4 fm−1, a = 1 fm−1, b = 1 fm−1, A = 1 fm−1, B = 1 fm−1,
v0 = v1 = 0.1, Cs = 5 fm−1.

We have obtained the energy eigen-values and the wave function of the radial Dirac equation for Manning–Rosen
plus quasi-Hellman potentials with Hulthen plus Yukawa-like tensor interaction in the presence of the spin symmetry
for k ̸= 0.

5 Pseudo-Spin Symmetry with Tensor Interaction

For the pseudo-spin symmetry, i.e., dΣ(r)/dr = 0 or
∑

(r) = Cps = const. the lower component Dirac equation
can be written as:[45]{ d2

dr2
− k(k − 1)

r2
+

2kU(r)

r
+

dU(r)

r
− U2(r)− [M + En,k −∆(r)][M − E +Σ(r)]

}
Gnr,k(r) = 0 . (24)

We consider the scalar, vector, and tensor potentials as the following:

∆(r) = −A
e−αr

(1− e−αr)
+B

( e−αr

1− e−αr

)2

+ b
e−αr

r2
− a

r
, (25)

U(r) = − v0
(1− e−αr)

− v1
r
e−αr. (26)

By substituting Eqs. (25) and (26) into Eq. (24), we obtain the lower radial equation of Dirac equation as:{ d2

dr2
− 1

r2
(k(k − 1) + 2kv1 e

−αr − v1 e
−αr + v21 e

−2αr)− 1

r

( 2kv0
(1− e−αr)

− αv1 e
−αr + 2v0v1

e−αr

(1− e−αr)

)
− v0
(1− e−αr)2

(v0 + α e−αr)−γ′ − δ′
(
−A

e−αr

(1− e−αr)
+B

( e−αr

1− e−αr

)2

+ b
e−αr

r2
− a

1

r

)}
Fnr,k(r) = 0 , (27)

where γ′ = (M + En,k)(M − En,k + Cps) and δ′ = (M − En,k + Cps).
By using the transformation s = exp(−αr) and employing the improved approximation Eq. (27) brings into the

form:

G′′
n,k(s) +

(1− s)

s(1− s)
G′

n,k(s) +
1

s2(1− s)2
(ζ ′2s

2 + ζ ′1s+ ζ ′0)Gn,k(s) = 0 , (28)

where the parameters ζ ′2, ζ
′
1, and ζ ′0 are considered as follows:

ζ ′2 = − 1

α2
(γ′ − δ′A− δ′B)− v1(v1 + 1), ζ ′1 =

1

α2
(2γ′ − δ′A)− 1

α
(δ′a− v0)− δ′b− 2v1ηk ,

ζ ′0 = − γ′

α2
− 1

α
(δ′a+ v0)− ηk(ηk − 1) . (29)

By comparing Eq. (28) with Eq. (1), we can easily obtain the coefficients k′i (i = 1, 2, 3) as follows:

k′1 = k′2 = k′3 = 1 . (30)

The values of the coefficients k′i (i = 4, 5) are also found from Eq. (4) as below:

k′4 =
√
−ζ ′0, k′5 =

1

2
+

√
1

4
− (ζ ′2 + ζ ′1 + ζ ′0) . (31)
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With using the energy equation, Eq. (2) for energy eigen-values we have:[
−C ′ −

[
1
2 +

√
1
4 − (ζ ′2 + ζ ′1 + ζ ′0)

]2 − [ 1−2n
2 − 1

2 (1−
√
−4ζ ′2)]

2

2[1−2n
2 − 1

2 (1−
√
−4ζ ′2)]

]2

−

[
1

2
+

√
1

4
− (ζ ′2 + ζ ′1 + ζ ′0)

]2

= 0 . (32)

In Tables 4–6, we give the numerical results for the pseudo-spin symmetric energy eigen-values (in units of fm−1).

Table 4 The energy eigen-values (in units of fm−1) for the pseudo-spin symmetry limit in the presence and
absence of Hulthen plus Yukawa-like tensor by parametersM = 10 fm−1, c = 1, h = 1, α = 0.4 fm−1, a = 1 fm−1,
b = 1 fm−1, A = 1 fm−1, B = 1 fm−1, Cps = −5 fm−1.

l n, k < 0
State Eps

n,k Eps
n,k n, k > 0

State Eps
n,k Eps

n,k

(l, j) (v0 = v1 = 0) (v0 = v1 = 0.65) (l+ 2, j + 1) (v0 = v1 = 0) (v0 = v1 = 0.65)

1 1,−1 1s1/2 5.019 919 131 5.014 411 589 1, 2 1d3/2 5.019 919 131 5.096 930 918

2 1,−2 1p3/2 5.055 970 775 5.021 549 569 1, 3 1f5/2 5.055 970 775 5.144 958 264

3 1,−3 1d5/2 5.102 241 390 5.047 831 688 1, 4 1g7/2 5.102 241 390 5.197 871 403

4 1,−4 1f7/2 5.154 862 403 5.088 564 324 1, 5 1h9/2 5.154 862 403 5.254 076 716

Table 5 The energy eigen-values (in units of fm−1) for the pseudo-spin symmetry limit
with parameters M = 10 fm−1, c = 1, h = 1, a = 1 fm−1, b = 1 fm−1, A = 1 fm−1,
B = 1 fm−1, Cps = −5 fm−1.

α/fm−1
Eps

n,k (v0 = v1 = 0) Eps
n,k (v0 = v1 = 0.7)

1d5/2 1g7/2 1d5/2 1g7/2

0.05 4.965 887 554 4.965 887 554 4.671 148 958 5.016 536 852

0.15 4.593 508 465 4.593 508 465 4.866 912 603 5.056 260 336

0.25 4.974 989 489 4.974 989 489 4.940 231 068 5.107 246 518

0.35 5.078 558 988 5.078 558 988 4.186 373 171 5.169 808 128

0.45 5.128 914 342 5.128 914 342 5.006 920 934 5.243 726 91

0.60 5.226 382 418 5.226 382 418 5.010 492 44 5.375 103 194

0.70 5.305 372 845 5.305 372 845 5.013 289 767 5.475 739 681

Table 6 The energy eigen-values (in units of fm−1) for the pseudo-spin symmetry limit
with parameters c = 1, h = 1, α = 0.4 fm−1, a = 1 fm−1, b = 1 fm−1, A = 1 fm−1,
B = 1 fm−1, Cps = −5 fm−1.

M/fm−1
Eps

n,k (v0 = v1 = 0) Eps
n,k (v0 = v1 = 0.75)

1d5/2 1g7/2 1d5/2 1g7/2

5 0.299 583 014 0.299 583 014 0.122 238 961 0.613 218 316

5.5 0.752 667 809 0.752 667 809 0.521 107 678 1.021 322 750

6 1.217 934 79 1.217 934 79 1.017 487 164 1.451 690 478

6.5 1.458 897 949 1.458 897 949 1.514 921 629 1.897 557 639

7 2.170 364 141 2.170 364 141 2.013 010 111 2.354 494 845

8 3.139 545 324 3.139 545 324 3.057 391 086 3.290 672 446

9 4.118 051 359 4.118 051 359 4.048 659 693 4.245 896 947

10 5.102 241 390 5.102 241 390 5.007 349 118 5.212 876 954

By using Eq. (3) and Eq. (31) we can finally obtain the lower component of the Dirac spinor as below:

Gps
n,k

(r) = N( e−2αr)(
√
−c′)(1− e−2αr)(1/2+

√
1/4+A′+B′+C′)

× 2F1

(
−n, n+ 2

(√
−c′ +

1

2
+

√
1

4
+A′ +B′ + C ′

)
; 2
√
−c′ + 1, e−2αr

)
, (33)

where N ′ is the normalization constant, on the other hand, the upper component of the Dirac spinor can be calculated

from Eq. (33) as:

F ps
n,k(r) =

1

M − Eps
n,k + Cps

( d

dr
− k

r
+ U(r)

)
Gps

n,k
(r) . (34)
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The effects of the Hulthen plus Yukawa-like tensor interactions on the upper and lower components for the pseudo-spin

symmetry are shown in Figs. 3.

Fig. 3 (a)-Upper and (b)-lower components of 1g7/2 in the pseudo-spin symmetry in the presence and absence of
Hulthen plus Yukawa-like tensor interaction by parameters M = 10 fm−1, c = 1, h = 1, α = 0.4 fm−1, a = 1 fm−1,
b = 1 fm−1, A = 1 fm−1, B = 1 fm−1, v0 = v1 = 0.1, Cps = −5 fm−1.

Fig. 4 Energy spectra in the (a)-spin and (b)-pseudo-spin symmetries versus v0 = v1 for Hulthen plus Yukawa like
tensor interaction with parameters M = 10 fm−1, c = 1, h = 1, α = 0.4 fm−1, a = 1 fm−1, b = 1 fm−1, A = 1 fm−1,
B = 1 fm−1, Cs = 5 fm−1, Cps = −5 fm−1.

The sensitiveness of the pseudo-spin doublets (1p3/2,

1f5/2), (1d5/2, 1g7/2) and spin doublets (1f5/2, 1f7/2),

(1p1/2, 1p3/2) for the parameters v0 = v1 are given in

Fig. 4.

6 Results and Discussion

We obtain the energy eigen-values in the absence and

the presence of the Coulomb-like tensor potential for var-

ious values of the quantum numbers n and k. In Ta-

bles 1 and 4 in the absence of the tensor interaction

(v0 = v1 = 0), the degeneracy between spin doublets and

pseudo-spin doublets are observed. For example, we ob-

serve the degeneracy in (1p1/2, 1p3/2), (1d3/2, 1d5/2), . . .

etc. in the spin symmetry, and we observe the degeneracy

in (1s1/2, 1d3/2), (1p3/2, 1f5/2), . . . etc. in the pseudo-

spin symmetry. When we consider the tensor interaction

for example by parameters v0 = v1 = 0.65, the degeneracy

is removed. In Tables 2 and 3 for the spin symmetry, also

in Tables 5 and 6 for the pseudo-spin symmetry we show

that exist degeneracy between spin doublets for several

of parameters α and M , and we show that degeneracy

is removed in the present of tensor interaction. The ef-

fects of the Hulthen plus Yukawa-like tensor interactions

on the upper and lower components of radial Dirac equa-

tion for the symmetries are shown in Figs. 2 and 3. We

have showen in Fig. 4 behavior energy for various v0 = v1
in the spin and pseudo-spin symmetry. The degeneracy is

removed by tensor interaction effect. Also, the amount of

the energy difference between the two states in the dou-

blets increases with increasing v0 and v1.

7 Conclusions

In this paper, we have discussed approximately the

solutions of the Dirac equation for Manning–Rosen plus

quasi-Hellman potentials with Hulthen plus Yukawa-like

in Spin Symmetry and Pseudo-spin Symmetry for k ̸= 0.

We obtained the energy Eigen-values and the wave func-

tion in terms of the generalized polynomials functions via

the formula method. To show the accuracy of the present

model, some numerical values of the energy levels are

shown in figures 2, 3, and 4. We have shown that the

energy degeneracy in pseudo-spin and spin doublets is re-

moved by the tensor interaction effect.



490 Communications in Theoretical Physics Vol. 66

References
[1] A.I. Ahmadov, C. Aydin, and O. Uzun, Int. J. Mod. Phys.

A 29 (2014) 1450002.

[2] I.C. Wang and C.Y. Wong, Phys. Rev. D 38 (1988) 348.

[3] P. Alberto, R. Lisboa, M. Malheiro, and A.S. de Castro,
Phys. Rev. C 71 (2005) 03431.

[4] Y.I. Salamin, S. Hu, K.Z. Hatsagortsyan, and C.H. Keitel,
Phys. Rep. 427 (2006) 41.

[5] M.I. Katsnelson, K.S. Novoselov, and A.K. Geim, Nature
Phys. 2 (2006) 620.

[6] Y.F. Cheng and T.Q. Dai, Chin. J. Phys. 45 (2007) 480.

[7] A. Arima, M. Harvey, and K. Shimizu, Phys. Lett. B 30
(1969) 517.

[8] K.T. Hecht and A. Adler, Nucl. Phys. A 137 (1969) 129.

[9] J.N. Ginocchio, Phys. Rep. 414 (2005) 165.

[10] R. Lisboa, M. Malheiro, A.S. de Castro, P. Alberto, and
M. Fiolhais, Phys. Rev. C 69 (2004) 024319.

[11] M. Eshghi, Can. J. Phys. 91 (2013) 71.

[12] O. Aydogdu and R. Sever, Eur. Phys. J. A 43 (2010)
73.

[13] M.R. Shojaei and M. Mousavi, Adv. High Energy Phys.
2016 (2016) 12, Article ID 8314784.

[14] C.S. Jia, P. Gao, and X.L. Peng, J. Phys. A: Math. Gen.
39 (2006) 7737.

[15] A. Diaf and A. Chouchaoui, Phys. Scr. 84 (2011) 015004.

[16] M.R. Shojaei and M. Mousavi, Int. J. Phys. Sci. 10 (2015)
324.

[17] M. Mousavi and M.R. Shojaei, Chin. J. Phys. (2016),
doi:10.1016/j.cjph.2016.07.006.

[18] L.H. Zhang, X.P. Li, and C.S. Jia, Phys. Lett. A 372
(2008) 2201.

[19] C.S. Jia and A.D.S. Dutra, Ann. Phys. 323 (2008) 566.

[20] H. Ciftci, R.L. Hall, and N. Saad, J. Phys. A 36 (2003)
11807.

[21] O. Ozer and G. Levai, Rom. Journ. Phys. 57 (2012) 582.

[22] S.H. Dong, Factorization Method in Quantum Mechanics,
Springer, Dordrecht (2007).

[23] I. Infeld and T.E. Hull, Rev. Mod. Phys. 23 (1951) 21.

[24] B.J. Falaye, S.M. Ikhdair, and M. Hamzavi, Few-Body
Systems 56 (2015) 63.

[25] A.K. Roy, Phys. Lett. A 321 (2004) 231.

[26] A.K. Roy, Int. J. Quant. Chem. 113 (2013) 1503.

[27] J.M. Cai, P.Y. Cai, and A. Inomata, Phys. Rev. A 34
(1986) 4621.

[28] A. Diaf, A. Chouchaoui, and R.J. Lombard, Ann. Phys.
317 (2005) 354.

[29] A.A. Rajabi and M. Hamzavi, Int. J. Theor. Phys. 7
(2013) 7.

[30] A.N. Ikot, A.B. Udoimuk, and L.E. Akpabio, Am. J. Sci.
Ind. Res. 2 (2011) 179.

[31] W.C. Qiang, Chin. Phys. 13 (2004) 575.

[32] W.C. Qiang, Chin. Phys. 12 (2003) 1054–04.

[33] C. Berkdemir, A. Berkdemir, and R. Sever, Phys. A:
Math. Gen. 399 (2006) 13455.

[34] J.Y. Guo and Z.Q. Sheng, Phys. Lett. A 338 (2005) 90.

[35] X.C. Zhang, Q.W. Liu, C.S. Jia, and L.Z. Wang, Phys.
Lett. A 340 (2005) 59.

[36] F. Scarf, Phys. Rev. 112 (1958) 1137.

[37] C.Y. Chen, Phys. Lett. A 339 (2005) 283.

[38] A. de Souza Dutra and M. Hott, Phys. Lett. A 356 (2006)
215.

[39] L.Z. Yi, Y.F. Diao, J.Y. Liu, and C.S. Jia, Phys. Lett. A
333 (2004) 212.

[40] A.D. Alhaidari, J. Phys. A: Math. Gen. 34 (2001) 9827.

[41] A. Arda and R. Server, Z. Naturforsch 69a (2014) 163.

[42] P.Q. Wang, L.H. Zhang, C.S. Jia, and J.Y. Liu, J. Mol.
Spectrosc. 274 (2012) 5.

[43] C.S. Jia, T. Chen, and S. He, Phys. Lett. A 377 (2013)
682.

[44] M.F. Manning and N. Rosen, Phys. Rev. 44 (1933) 953.

[45] W. Greiner, Relativistic Quantum Mechanics: Wave
Equations, Springer, Berlin (2000).

[46] M. Farrokh, M.R. Shojaeia, and A.A. Rajabi, Eur. Phys.
J. Plus 128 (2013) 14.

[47] R.L. Greene and C. Aldrich, Phys. Rev. A 14 (1976) 2363.

[48] C.S. Jia, T. Chen, and L.G. Cui, Phys. Lett. A 373 (2009)
1621.

[49] C.S. Jia, J.W. Dai, L.H. Zhang, J.Y. Liu, and X.L. Peng,

Phys. Lett. A 379 (2015) 137.


