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Higher-Order Corrections to Earth’s Ionosphere Shocks∗
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Abstract Nonlinear shock wave structures in unmagnetized collisionless viscous plasmas composed fluid of positive
(negative) ions and nonthermally electron distribution are examined. For ion shock formation, a reductive perturbation
technique applied to derive Burgers equation for lowest-order potential. As the shock amplitude decreasing or enlarging,
its steepness and velocity deviate from Burger equation. Burgers type equation with higher order dissipation must
be obtained to avoid this deviation. Solution for the compined two equations has been derived using renormalization
analysis. Effects of higher-order, positive- negative mass ratio Q, electron nonthermal parameter δ and kinematic
viscosities coefficient of positive (negative) ions η1 and η2 on the electrostatic shocks in Earth’s ionosphere are also
argued.
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1 Introduction
Research on ion-acoustic waves (IAWs) in ion pair

plasmas has gained considerable amount of momentum
over the last few years.[1−2] Positive-negative ion have
been observed in many astrophysical environments.[3]

More specifically, Negative ions are present in D-region
altitudes of the ionosphere of Earth in coexistence with
electrons as they are formed primarily by electron added
to electronegative species.[4] In last few years, ion solitary
waves in ion-pair plasmas investigated both numerically
and experimentally.[5−6] In past, the nonthermal particles
observed in many space environments.[7−9] However, sev-
eral theoretical studies on nonlinear waves show that, elec-
trons and ions non-thermal distributions are convenient in
analyzing observation data in space plasma.[7−12] Cairns
et al.[9] discussed the nonthermal electron effect on the
ion acoustic wave existence. Elwakil et al.[2] inspected ion
acoustic modulation instability characteristics in plasma
having nonthermal electronsand positive-negative ions. It
is reported that, the instability conditions affected by non-
thermal electron parameter in D and F regions in Earth’s
ionosphere. Gill et al.[13] investigated rarefactive and com-
pressive soliton properties in two polarized ions plasma.
Recently, nonthermality effect of positron-electron have
been examined on the properties of improved compressive-
rarefactive solitons generated in warm ion plasma.[14] On
the other hand, there are many theoretical methods for
studying nonlinear properties in plasma physics. Reduc-
tive perturbation analysis (RPT) aim to study the propa-
gation of small wave amplitude.[15] As the wave amplitude

enlarge, the solitary profile sidetrack from the nonlinear

equation. In order to beat this deviation, the amplitude

modulation of electrostatic nonlinear waves has been stud-

ied by many investigators.[16−19] Kalejahi et al.[19] dis-

cussed the higher order nonlinear effects in a relativistic

plasma. Abdelwahed and El-Shewy[16] improved the soli-

ton shape of solitary wave directly by using algebraic anal-

ysis for solving the field equations. Chatterjee et al.[17]

examined the region of solitary wave existence in non-

thermal ions plasma. They discussed the effect of non-

thermal ions and electron density on the properties of

obtained dressed form. Accordingly, to improve the de-

scription of experimental data, the effect of fluctuation

of charge of dusty plasma on the dressed nonlinear soli-

ton waves has been investigated.[20] On the other hand,

dusty size effect on the dressed soliton like wave amplitude

and energy have been discussed in dust plasma contain-

ing dust grains and nonthermal ions.[21] Physically, some

phenomenon like kinematic viscosity, collisions between

plasma components and Landau damping are responsible

for shocks formation in Earth ionosphere.[22−24] The shock

wave existence and propagation have been investigated

experimentally and theoretically.[25−31] Cairns et al.[32]

investigated laminar ion shocks to explain observations

on ion acceleration laser plasmas. Abdelwahed[33] ob-

tained the higher order dissipation in terms of Burger-type

equation to modulate the broadband auroral electrostatic

shock noise. From theoretical point of view, Kadomtsev–

Petviashvili–Burgers (KPB) equation has been derived by
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Hussain et al.[34] They discussed the diffraction and dissi-

pation effects on the shock wave structures in epi plasma

with kappa distributed positrons and electrons. More

specifically, the obliqueness of solitary shocks in a magne-

tized viscous plasma have been studied.[35] Abdelwahed

and el-Shewy[36] studied the nonlinear features of ratio-

nal and double layer ion acoustic solitary solutions. Fur-

thermore, Masood and Rizvi[37] investigated the viscosity

effect of negative and positive ions in dissipative plasma

medium in a planar geometry. Also, kinematic viscosity

effect on formation of shock waves in asymmetric pair ion

plasmas has been examined.[38] It was noted that, kine-

matic viscosity enhances the amplitude of shock profile. In

this study, the higher-order acoustic shock modulation in

plasmas with negative-positive ions and nonthermal elec-

trons have been considered. In Sec. 2, the equations of the

system is presented, and higher-order Burgers equation is

derived in Sec. 3. In Sec. 4, the solutions of the higher-

order Burgers-equation are presented. Finally, the results

and discussion are recapitulated in Sec. 5.

2 Basic Equations

A system of three collisionless unmagnetized plasmas

components having viscous fluid of positive (+) and nega-

tive (−) ion and nonthermally electron distribution. The

normalized equations are given by:

∂n±

∂t
+

∂

∂x
(n±u±) = 0 , (1)( ∂

∂t
+ u+

∂

∂x

)
u+ = −∂ϕ

∂x
+ η1

∂2u+
∂x2

, (2)( ∂
∂t

+ u−
∂

∂x

)
u− =

Z−

Z+
Q
∂ϕ

∂x
+ η2

∂2u−
∂x2

, (3)

∂2ϕ

∂x2
= Z−n− + ne − Z+n+ , (4)

ne is the electrons density obey nonthermally dis-

tributed.[9]

ne = µ
(
1− β

Z−

Z+
ϕ+ β

(Z−

Z+

)2

ϕ2
)
exp

(Z−

Z+
ϕ
)
, (5)

β = 4δ/(1 + 3δ) , (6)

where δ is the electron nonthermality parameter and

µ = ne0/n+0 is the unperturbed electron to positive ion

ratio. In Eqs. (1)–(5), n+(n−) is positive (negative) ionic

density (normalized by n+0(n−0), u+(u−) is positive (neg-

ative) ion fluid velocity normalized by the ion sound speed

Cs = (KBTe/m+)
1/2

and ϕ is electrostatic wave potential (normalized by
KBTe/eZ+). x (t) is space (time) coordinate, x is nor-
malized to Debye length of hot electron

λDi = (KBTe/4πe
2Z2

+n+0)
1/2 ,

t normalized by inverse of plasma frequency of cold elec-
tron

ω−1
pi = (4πe2Z2

+n+0/m+)
−1/2 ,

where KB is the Boltzmann constant. Te is the electron
temperature, ν = n−0/n+0, and the Q (mass ratio) =
m+/m−, where m+ and m− are positive and negative ion
masses, respectively. Also, Z± is ionic charge number.
The positive (negative) kinematic viscosity η+ (η−) are
normalized by η+ = η1/(ωpiλ

2
Di) and η− = η2/(ωpiλ

2
Di).

The neutrality condition implies:

Z+ = Z−ν + µ (7)

for simplicity we shall consider (Z+ = Z− = 1).

2.1 Nonlinear Calculations
The slow stretched co-ordinates in (RPT) method[15]

are given by:

τ = ϵ3/2t , ξ = ϵ1/2(x− λt) ,

η1 = ϵ1/2η1 , η2 = ϵ1/2η2 . (8)

The speed of the wave λ and ϵ is a small real param-
eter. Expanding quantities in Eqs. (1)–(5) about their
equilibrium values:

n+ = 1 + ϵn+1 + ϵ2n+2 + ϵ3n+3
+ · · · ,

u+ = ϵu+1 + ϵ2u+2 + ϵ3u+3 + · · · ,

n− = 1 + ϵn−1 + ϵ2n−2 + ϵ3n−3 + · · · ,

u− = ϵu−1 + ϵ2u−2 + ϵ3u−3 + · · · ,

ϕ = ϵΦ1 + ϵ2Φ2 + ϵ3Φ3 + · · · (9)

The last equations are valid with conditions: |ξ| → ∞,
n− = n+ = 1, u+ = 0, ϕ = 0. Using Eqs. (8) and
(9) into Eqs. (1)–(6) for quasi-neutrality condition at
equilibrium,[39] the lowest-order in ϵ gives:

n+1 =
Φ1

λ2
ϕ1 , u+1 =

Φ1

λ
,

n−1 = −QνΦ1

λ2
, u−1 = −QΦ1

λ
. (10)

The dispersion form is given by:

(β − 1)λ2µ+ νQ+ 1

λ2
= 0 . (11)

The next equations of O(ϵ2) yield:

− λ
∂N+2

∂ξ
+
∂U+2

∂ξ
+
∂N+1

∂τ
+N+1

∂U+1

∂ξ
+ U+1

∂N+1

∂ξ
= 0 , (12)

− λ
∂U+2

∂ξ
+
∂U+1

∂τ
+
∂Φ2

∂ξ
+ U+1

∂U+1

∂ξ
+ η1

∂2U+1

∂ξ2
= 0 , (13)

− λ
∂N−2

∂ξ
+ ν

∂U−2

∂ξ
+
∂N−1

∂ξ
+N−1

∂U−1

∂ξ
+ U−1

∂N−1

∂ξ
= 0 , (14)
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− λ
∂U−2

∂ξ
+
∂U−1

∂τ
−Q

∂Φ2

∂ξ
+ U−1

∂U−1

∂ξ
+ η2

∂2U−1

∂ξ2
= 0 , (15)

1

2
µΦ2

1 + (µ− βµ)Φ2 +N−2 −N+2 = 0 . (16)

Put outN+2, N−2, ϕ2, U+2, and U−2 in Eqs. (12)–(16),

one obtained the Burger equation for ϕ1:

∂Φ1

∂τ
+A ϕ1

∂Φ1

∂ξ
+B

∂2Φ1

∂ξ2
= 0 , (17)

where

A = −λ
4µ+ 3νQ2 − 3

2(λ+ λνQ)
,

B =
η1 + η2νQ

2νQ+ 2
. (18)

Equation (17) admits the IA shock wave solution as

Φ1 =
2B

A
[1 + tanh(χ)] , (19)

whose amplitude equals 2B/A with χ(= ξ − 2Bτ).

The physical quantities N+2, N−2, U+2 and U−2 can

be rewritten as:

N+2 = −AΦ
2
1

λ3
+
η1
λ3
∂Φ1

∂ξ
− 2B

λ3
∂Φ1

∂ξ
+

3Φ2
1

2λ4
+

Φ2

λ2
,
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2
1

2λ2
+
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λ2
∂Φ1

∂ξ
− B

λ2
∂Φ1
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+

Φ2
1

2λ3
+

Φ2

λ
,

N−2 =
AνQΦ2

1

λ3
+

2BνQ

λ3
∂Φ1

∂ξ
+

3νQ2Φ2
1

2λ4

− η2νQ

λ3
∂Φ1

∂ξ
− νQΦ2

λ2
,
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AQΦ2

1

2λ2
+
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λ2
∂Φ1
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+
Q2Φ2

1

2λ3

− η2Q

λ2
∂Φ1

∂ξ
− QΦ2

λ
. (20)

Equations for the next order in ϵ are given by:

∂N+2

∂τ
− λ

∂N+3

∂ξ
+ U+2

∂N+1

∂ξ
+ U+1

∂N+2

∂ξ
+N+2

∂U+1

∂ξ
+N+1

∂U+2

∂ξ
+
∂U+3

∂ξ
= 0 , (21)

∂U+2

∂τ
+ U+2

∂N+1

∂ξ
+ U+1

∂N+2

∂ξ
− λ

∂U+3

∂ξ
+ η1

∂2U+2

∂ξ2
+
∂Φ3

∂ξ
= 0 , (22)

∂N−2

∂τ
− λ

∂N
(1,0)
−3

∂ξ
+ U−2

∂N−1

∂ξ
+ U−1

∂N−2

∂ξ
+N−2

∂U−1

∂ξ
+N−1

∂U−2

∂ξ
+ ν

∂U−3

∂ξ
= 0 , (23)

∂U−2

∂τ
+ U−2

∂U−1

∂ξ
+ U−1

∂U−2

∂ξ
− λ

∂U−3

∂ξ
+ η2

∂2U−2

∂ξ2
−Q

∂Φ3

∂ξ
= 0 , (24)

1

6
(3βµ+ µ)Φ13 + (µ− βµ)Φ3 + µΦ2Φ1 +N−3 −N+3 = 0 . (25)

Eliminating N+2, N−2, U+2, U−2 and ϕ3 from Eqs. (21)–(25), we get a linearly inhomogeneous Burger type equation
for ϕ1 and ϕ2:

L̃(ϕ1)ϕ2 ≡ ∂ϕ2
∂τ

+A
∂(ϕ1ϕ2)

∂ξ
+B

∂2ϕ2
∂ξ2

− S(ϕ1) = 0 , (26)

where

S(ϕ1) = A1
∂3ϕ1
∂ξ3

+A2

(
ϕ21
∂ϕ1
∂ξ

)
+A3

(∂ϕ1
∂ξ

)2

+A4

(
ϕ1
∂2ϕ1
∂ξ2

)
, (27)

where the coefficients Ai (where i = 1, 2, . . . , 4) are given by:

A1 =
3B2(νQ+ 1)− 3Bη1 + η2νQ(η2 − 3B) + η21

2(λ+ λνQ)
,

A2 =
6A2λ2(νQ+ 1) + 20Aλ

(
νQ2 − 1

)
+ λ6(−(3βµ+ µ)) + 15

(
νQ3 + 1

)
4λ3(νQ+ 1)

,

A3 =
B
(
3A(λ+ λνQ) + 4νQ2 − 4

)
+ η1(4− 3Aλ)− η2νQ(3Aλ+ 4Q)

2λ2(νQ+ 1)
,

A4 =
−2B

(
3A(λ+ λνQ) + 4νQ2 − 4

)
+ η1(3Aλ− 4) + η2νQ(3Aλ+ 4Q)

2λ2(νQ+ 1)
. (28)

In summary, our model reduced to nonlinear Burger equation (17) for ϕ1 and Burger type equation (26) for ϕ2;
source term (28) is a function ϕ1.
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3 Stationary Solution
By using Eq. (19), Eq. (27) can be transformed into the form:

d2Φ2

dχ2
+

d

dχ
(2Φ2 tanh(χ)) = K(χ) , (29)

where

K(χ) =
8 tanh(χ)sech2(χ)(2A2B

2 −AA4B)

A3

4 sech4(χ)(−3A2A1 +AA3B + 2AA4B − 2A2B
2)

A3

+
8sech2(χ)(A2A1 −AA4B + 2A2B

2)

A3
. (30)

According to the homogeneous equation of Eq. (29) has two independent solutions, one of them is, P 2
3 (V ) =

sech2(χ), and the other, which can be derived using reduction of order method along with Able’s theorem, is given
by Q2

3(χ) = [χ/2+ (1/4)sech(2χ)]sech2(χ). Using the variation of parameters method,[40−41] the particular solution of
Eq. (29) can be written as

Φ2(χ) = L1(χ)P
2
3 (χ) + L2(χ)Q

2
3(χ) , (31)

where L1(ψ) and L2(ψ) are given by

L1(χ) =

∫
Q2

3(χ)K(χ)

W (P 2
3 (χ), Q

2
3(χ))

dχ , (32)

L2(χ) =

∫
P 2
3 (χ)K(χ)

W (P 2
3 (χ), Q

2
3(χ))

dχ , (33)

with

W (P 2
3 , Q

2
3) = P 2

3

dQ2
3

dχ
+Q2

3

dP 2
3

dχ
= sech2(χ) .

Then, the formal stationary IA shock solution is given by:

Φ(χ) = Φ1(χ) + Φ2(χ) =
4B(AA3 −AA4 + 4A2B)

3A3
− 4Bχsech2(χ)(2A2B −AA4)

A3

+
4sech2(χ)Ln (cosh(χ))(−3A2A1 +AA3B + 2ABA4 − 2A2B

2)

3A3

+
2sech2(χ)(−3A2A1 −AA3B + 4AA4B − 10A2B

2)

3A3
+

2B(tanh(χ) + 1)

A
. (34)

4 Model Results and Discussions
Shock waves are studied in unmagnetized viscous

positive negative ion plasmas. Numerical values have
been introduced for Earth’s ionosphere (D- and F-
regions).[1−2,22−23] According to the wave dissipation
caused by kinematic viscosity, the studied system sup-
ports electrostatic shock waves. However, the main essen-
tial stimulus was to study the contribution of higher-order
electric field structures associated to the shock waves. The
comparison of lowest order and higher-order shock noise
and associated electric field structures are shown in Fig. 1.
It is shown that higher-order decreases both steepness and
amplitude of shock form and modulates the associated
electric field structure. We have studied the effectuation of
plasma parameters such as the population of nonthermal
electrons δ, the kinematic viscosities coefficient of posi-
tive negative ions η1 and η2 and the ion mass ratio Q
(= m+/m−) on the dynamics formation of higher-order
broadband electrostatic shock noise. For example, Fig. 2
shows that, the increase of electron nonthermal parame-
ter δ decreases shock steepness and amplitude. Accord-

ingly, the amplitude and width of associated electric field

of shock structure decreased also. On the other hand,

the effect of kinematic viscosity coefficients of positive-

negative ions η1 and η2 on higher-order shock profile ϕ

and associated electric field structures Ef have been ex-

amined in Figs. 3–4. It is found that as η1 and η2 in-

crease the steepness, amplitude of higher-order shock wave

and higher-order electric field structures associated to the

shock waves. The physical reason for this behavior is that

the increase of kinematic viscosity coefficients increases

the dissipation and consequently causes strong shock wave

and associated electric field structures. Finally, the ratio

raise of positive-negative mass Q decreases both wave am-

plitude and steepness of electrostatic shocks as shown in

Fig. 5. In summary, it has been noted that the involve-

ment of higher-order effects, positive-negative mass ratio

Q, electron nonthermal parameter δ and kinematic vis-

cosities coefficient of positive and negative ions η1 and η2
would regulate the countenance of ion electrostatic acous-

tic shock waves in D- and F-regions of Earth’s ionosphere.
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Fig. 1 The comparison of lowest and higher-order shock profile and associated electric field structures for
Q = 0.03, η1 = 0.3, η2 = 0.2, ν = 0.5, and δ = 0.2.

Fig. 2 Variation of higher-order shock profile ϕ and associated electric field structures Ef vs. χ and δ for
Q = 0.03, η1 = 0.3, η2 = 0.2, ν = 0.5.

Fig. 3 Variation of higher-order shock profile ϕ and associated electric field structures Ef vs. χ and η1 for
Q = 0.03, η2 = 0.2, ν = 0.5, and δ = 0.2.

Fig. 4 Variation of higher-order shock profile ϕ and associated electric field structures Ef vs. χ and η2 for
Q = 0.03, η1 = 0.03, ν = 0.5, and δ = 0.2.
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Fig. 5 Variation of higher-order shock profile ϕ and associated electric field structures Ef vs. χ and Q for
η1 = 0.3, η2 = 0.2, ν = 0.5, and δ = 0.2.

5 Conclusion

Ion shock waves are discussed in three collisionless un-

magnetized plasmas components having viscous fluid of

positive (+) and negative (−) ion and nonthermally elec-

tron distribution. The nonlinear Burger equation (17) for

lowest order and linear inhomogeneous Burger type equa-

tion (26) for higher-order dissipation are obtained. Renor-

malization technique gives stationary solution for pertur-

bation theory equations. It is emphasized that steepness

and amplitude of higher-order shock waves are sensitive to

higher-order effects, positive-negative mass ratio Q, elec-

tron nonthermal parameter δ and kinematic viscosities co-

efficient of positive (negative) ions η1 (η2). It is clear to

confirm that the increase (decrease) of η1 and η2 (Q and δ)

can lead to the increase of higher-order broadband electro-

static shock amplitude. The results obtained may be use-

ful in understanding electrostatic shock noise in Earth’s

ionosphere.
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