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Numerical Investigation of Micropolar Casson Fluid over a Stretching Sheet with

Internal Heating
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Abstract This theoretical study investigates the microrotation effects on mixed convection flow induced by a stretching
sheet. Casson fluid model along with microrotation is considered to model the governing flow problem. The system
is assumed to undergo internal heating phenomenon. The governing physical problem is transformed into system of
nonlinear ordinary differential equations using scaling group of transformations. These equations are solved numerically
using Runge Kutta Fehlberg scheme coupled with shooting technique. Influence of sundry parameters for the case of
strong and weak concentration of microelements on velocity, temperature, skin friction and local heat flux at the surface
are computed and discussed. Lower skin friction and heat flux is observed for the case of weak concentration (n = 0.5)
compared to strong concentration of microelements (n = 0.0) near the wall.
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1 Introduction

Fluids with microstructures are termed as micropolar

fluids. These fluids comprise of rigid, randomly oriented

particles submerged in a glutinous medium. Micropolar

fluids find tremendous applications in blood, foodstuffs,

polymers, liquid metal and alloys, plasma and drilling of

oil and gas wells etc. Such type of fluid model contains

non-symmetric stress tensors. Eringen[1−2] introduced the

theoretical explanations of micropolar fluids and discov-

ered the effects of micro motion of fluid elements. He

proposed a logical and significant overview of the clas-

sical Navier–Stokes model, covering, both in theory and

applications, many more phenomena than the classical

one. Moreover his generalization was well-designed and

not too complex. Airman et al.[3−4] presented a detailed

review on application of fluids experiencing micro rota-

tion at particle level. Khonsari and Brewe[5] examined

the effects of viscous dissipation on lubrication character-

istics of micropolar fluids. They reported that existence of

microstructure, according to the micropolar theory, tends

to enhance the load-carrying capacity and friction coeffi-

cient. Rotating micropolar fluid between parallel plates

with heat transfer under the influence of transverse mag-

netic field has been investigated by Rashid et al.[6] They

concluded that the micro rotation is an increasing function

of coupling parameter, magnetic field and Reynolds num-

ber for strong concentration and it is a decreasing function

of viscosity parameter. Nazar et al.[7] analyzed the stag-

nation point flow of a micropolar fluid over a stretching

sheet. They carried out numerical investigation by em-

ploying Keller Box method. Non-Newtonian fluids have

been an intense topic of research for the past few decades.

Much focus had been given to the modeling and analysis

of non-Newtonian fluids with rheological characteristics

because of usage of various non-Newtonian fluids such as

lubricants in industry. The non-linearity can manifest it-

self in a variety of ways in many fields, such as in food

processing, drilling operations and bio-engineering. In this

regard Ellahi et al.[8] presented numerical analysis of MHD

steady non-Newtonian flows in presence of heat transfer

and nonlinear slip effects. Similarly, Makinde et al.[9] an-

alyzed unsteady flow of a reactive variable viscosity non-

Newtonian fluid through a porous saturated medium with

asymmetric convective boundary conditions and observe

that there is a transient increase in both fluid velocity and

temperature with an increase in the reaction strength, vis-

cous heating and fluid viscosity parameter. Among the

class of several other non-Newtonian fluid models, Casson

fluid is one such model with yield stress characteristics.

Casson fluid falls in the category of dilatant fluids. It is

assumed that Casson fluid has an infinite viscosity at zero

shear rates. If the applied shear stress is less than the

yield stress then fluid behave like a solid and when shear

stress applied is greater than yield stress fluid starts to

move. Casson fluid model best fit to rheological data for

numerous materials such as jelly, sauce, honey, soup and

concentrated fruit juices, etc.[10] The presence of protein,

fibrinogen and globulin in aqueous base plasma, red blood

cells makes human blood an ideal example of Casson fluid.

Number of researchers used Casson fluid to mathemati-
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cally model and examine the blood flow under a low shear

rate in narrow arteries. Shahzad et al.[11] studied effects of

mass transfer on generalized non-Newtonian fluid. They

analyzed the influence of chemical reaction and suction

on Casson fluid in presence of magnetic field. Nadeem

et al.[12] observed analytically flow of Casson nanofluid.

Mustafa et al.[13] discussed unsteady boundary layer flow

of a Casson fluid due to an impulsively started moving flat

plate. Similarly Bhattacharya et al.[14] presented analytic

solution for magneto hydrodynamic boundary layer flow

of Casson fluid over a stretching/shrinking sheet with wall

mass transfer. Heat transfer of viscous non-Newtonian

fluids past a stretching sheet is a considerable problem

in fluid dynamics. The problems arise in the field of en-

gineering and metallurgy depends on hydrodynamic flow

and heat transfer rate. In polymer technology, stretch-

ing plastic sheets are used in manufacturing products. In

electrically conducting fluids, strips are used to control

the cooling process. Chen[15] worked out laminar mixed

convection of stretching sheet adjacent to vertical wall.

Ali et al.[16] examined laminar mixed convection bound-

ary layers induced by a linearly stretching permeable sur-

face. Ishak et al.[17] inspected mixed convection boundary

layers in the stagnation-point flow toward a stretching ver-

tical sheet. The thermal effects in fluid flows may cause

heat transfer effects in manufacturing processes. In these

processes, thermal buoyancy force arises due to heating

of a surface that may be in rest or moving continuously

under some circumstances. Shateyi et al.[18] analyzed the

effects of thermal radiation, hall currents, soret and du-

four on MHD flow and heat and mass transfer in a micro

polar fluid by mixed convection over stretching surfaces in

porous media. Vajravelu et al.[19] studied the heat transfer

in a viscous fluid over a stretching sheet with viscous dis-

sipation and internal heat generation. Some more studies

related to the current topic can be found in Refs. [20–31].

Most of researches have been carried out in micro po-

lar fluids for characterizing the impact of magnetic field,

heat transfer, mixed convection and viscous dissipation

etc. To the best of our knowledge, micro polar fluids with

rheological characteristics have not been discussed in past.

Novelty of present study is to examine micro polar Cas-

son fluid towards a stretching sheet influenced by internal

heat generation. Recent research is a fresh contribution

in this regard. Effects of sundry parameters on flow and

heat transfer characteristics are examined and discussed

in a physical manner.

2 Mathematical Formulation

Consider steady 2D flow of an incompressible microp-

olar Casson fluid towards a linear stretching convective

sheet. Heat and mass transfer flow due to stretching of a

heated or cooled surface of variable temperature T (x) and

uniform ambient temperature is T∞ (T > T∞) is consid-

ered. The governing equations of motion (i.e. the conti-

nuity, momentum, energy) in vector form for micropolar

fluid with rheological characteristics are as follow:

∇ · V̄ = 0 , (1)

ρ(V̄ · ∇)V̄ = k(∇×N) +m(T − T∞)ḡ

+ µ
(
1 +

1

β
+ k

)
(∇2V̄ ) , (2)

ρj(V̄ · ∇)N̄ = k(∇× V̄ )− 2kN̄ − γ(∇2N̄) , (3)

V̄ · ∇T = α∇2T +
Q0

ρCp
(T − T∞) . (4)

Component form of Eqs. (1)–(4) under boundary layer ap-

proximations and considering buoyancy effects are given

by:

∂u

∂x
+

∂v

∂y
= 0 , (5)

u
∂u

∂x
+ v

∂u

∂y
= ν

(
1 +

1

β

)(∂2u

∂y2

)
+

g0m(T − T∞)

ρ

+
k

ρ

∂2u

∂x2
+

k

ρ

∂N

∂y
, (6)

u
∂N

∂x
+ v

∂N

∂y
=

γ

ρj

∂2N

∂y2
− γ

ρj

(
2N +

∂u

∂y

)
, (7)

u
∂T

∂x
+ v

∂T

∂y
=

κ

ρCp

∂2T

∂y2
+

Q0

ρCp
(T − T∞) , (8)

with appropriate boundary conditions

u = uw(x) = ax, v = 0, N = −n
∂u

∂y
,

−k
∂T

∂y
= hf (Tf − T ), as y = 0 , (9)

u → 0, N → 0, T → T∞, as y → ∞ , (10)

where in above equations u and v are velocity compo-

nents along coordinates axes, uw(x) is velocity at wall,

a > 0 is stretching parameter, ρ is fluid density, ν is kine-

matic viscosity, k is vortex viscosity, β (= µB

√
2πc/py) is

Casson fluid parameter, N is micropolar rotation velocity,

n is boundary concentration parameter of fluid, the case

n = 0 represents strong concentration, n = 0.5 indicates

weak concentration, Cp is the specific heat at constant

pressure p, κ is thermal conductivity of the medium and

T is fluid temperature. A stream of cold fluid at tempera-

ture T∞ is moving over sheet while the surface of sheet is

heated from below by convection from hot fluid at temper-

ature Tf which provides a heat transfer coefficient hf , g0
is acceleration due to gravity, m is coefficient of thermal

expansion, Q0 is heat generation coefficient, γ is spin ra-

diation viscosity defined as γ = (µ+ k/2)j where j = ν/a

is the micro-inertia density.

To convert above system of partial differential equa-

tions, we introduce following similarity transformations[32]

η =

√
a

ν
y, u = axf ′(η), v = −

√
aνf(η) ,
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N = a

√
a

ν
xg(η), and θ(η) =

T − T∞

Tw − T∞
. (11)

Equation (5) is automatically satisfied and Eqs. (6)–

(8) become(
1 +

1

β
+K

)
f ′′′ + ff ′′ − (f ′)2 + λθ +Kg′ = 0 , (12)(

1 +
K

2

)
g′′ − fg′ + gf ′ −K(2g + f ′′) = 0 , (13)

θ′′ + Pr fθ′ + Pr δθ = 0 , (14)

and corresponding boundary conditions in Eqs. (9) and

(10) take the form

f(η) = 0, f ′(η) = 1, g(η) = −nf ′′(η) ,

θ′(η) +Bi(1− θ(η)) = 0, as η = 0 ,

f ′(η) → 0, g(η) → 0, θ(η) → 0, as η → ∞ , (15)

where K is micropolar parameter, λ is thermal convective

parameter, Pr is the Prandtl number, δ is heat generation

parameter and Bi is Biot number which are defined as:

Pr =
µcp
κ

, K =
k

µ
, λ =

Gr

Re2x
,

δ =
Q0

aρCp
, Bi =

hf

k

√
ν

a
, (16)

where Gr is Grashof number and Rex is Reynold number

are given by the relations

Gr =
g0β(T − T∞)

ν2
, Re2x =

xu0(x)

ν
. (17)

The physical quantities of interest are skin friction co-

efficient Cf and local Nusselt number Nux which are de-

fined as

Cf =
τw
ρu2

w

, Nux =
xqw

k(Tw − T∞)
, (18)

where the wall friction τw and heat transfer at wall qw,

are expressed as

τw =
(
µ+

py√
2πc

+ k
)∂u
∂y

+ kN |y=0 ,

qw = −κ
(∂u
∂y

)
at y = 0 . (19)

In view of Eq. (19), expressions described in (18) provide

the skin friction and local Nusselt number as

CfRe1/2x =
(
1 +

( 1

β

)
+K(1− n)

)
f ′′(0) ,

NuxRe−1/2
x = −θ′(0) , (20)

in which Rex = ax/ν is local Reynolds number.

3 The Numerical Solutions

Shooting method along with Runge Kutta fifth order

technique was incorporated to tackle the system of nonlin-

ear differential equations. Thus, solution of coupled non-

linear governing boundary layer Eqs. (12)–(14) together

with boundary conditions in Eq. (15) are computed by

means of shooting method along Runge Kutta fifth or-

der technique. Initially higher order nonlinear differential

equations (12)–(14) are converted into a system of first

order differential equations and further transformed into

initial value problem by labeling the variables as

y′1
y′2
y′3
y′4
y′5
y′6
y′7


=



y2

y3
1

(1+ 1
β+K)

(−y1y3 + (y2)
2 − λy6 −Ky5)

y5
1

(1+K
2 )

(y1y5 − y4y2 +K(2y4 + y3))

y7

−Pry1y7 − Prδy6


.

(21)

Associated boundary conditions in Eq. (15) can be trans-

formed as 

y1(0)

y2(0)

y3(0)

y4(0)

y5(0)

y6(0)

y7(0)


=



0

1

S1

−nS1

S2

S3

−Bi(1− S3)


. (22)

Above nonlinear coupled ODEs along with initial condi-

tions are solved using Runge Kutta method of order 5

integration techique. Appropriate values of unknown ini-

tial conditions S1, S2 and S3 are approximated through

Newton’s method. Computations are carried out using

mathematics software MATLAB. End of boundary layer

region i.e., when η → ∞ to each group of parameters, is

determined when the values of unknown boundary con-

ditions at y = 1 do not change to a successful loop with

error less than 10−6 (see Refs. [33–34]).

4 Results and Discussion

This section is dedicated to examine the influence of

sundry parameters on velocity f ′(η), microrotation g(η)

and temperature profile θ(η) in the presence of strong

(n = 0) and weak (n = 0.5) concentrations. Figure 1 is

plotted to discover influence of micropolar parameterK on

velocity profile f ′(η) for the case of weak concentration.

It can be observed that velocity profile f ′(η) as well as

corresponding momentum boundary layer thickness rises

with the increasing behavior of micropolar parameter K

for weak concentration. Figure 2 depicts that microrota-

tion profile g(η) increases with micropolar parameter K

near the wall for both cases of concentration but reverse

behavior is observed away from surface. Figure 3 depicts

the influence of mixed convection parameter λ on micro-

rotation profile g(η) for strong as well as weak concentra-

tions is positive. Influence of Casson fluid parameter β on

microrotation profile g(η) is presented through Fig. 4. It

is quite evident that microrotation profile g(η) is higher

for the case of weak concentration (n = 0.5) as compared

to strong concentration (n = 0). The graph for various
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values of Biot number Bi for temperature profile θ(η) is

displayed in Fig. 5. It can be seen that temperature in-

creases with attractive conduct of Biot number Bi. Figure

6 is plotted to examine the effect of δ on temperature pro-

file θ(η) for weak concentration n = 0.5. Here a grow

in temperature and thermal boundary layer thickness is

observed for mount in δ for weak concentration n = 0.5.

Fig. 1 Behavior of velocity profile f ′(η) against K. Fig. 2 Behavior of microrotation profile g(η) against K.

Fig. 3 Behavior of microrotation profile g(η) against λ. Fig. 4 Behavior of microrotaion profile aganist β for n = 0
and n = 0.5.

Fig. 5 Behavior of temperature profile θ(η) against Biot
number Bi.

Fig. 6 Behavior of temperature profile θ(η) against δ.

To investigate effects of parameters on skin friction co-

efficient (−f ′′(0)) and local Nusselt number (−θ′(0)) we

have demonstrated Figs. 7–10. From Fig. 7 it is illus-

trated that skin friction lessens by rising fluid parameter

β for strong as well as weak concentrations. The behav-

ior of micropolar parameter K on skin friction is seen in

Fig. 8. It explains that skin friction is a decreasing func-

tion of β as micropolar parameter K increases. Moreover,

Fig. 9 demonstrates the effect of micropolar parameter

K on Nusselt number (−θ′(0)) when plotted against fluid

parameter β. Heat flux (−θ′(0)) for weak (n = 0.5) and

strong (n = 0.0) concentrations is displayed in Fig. 10.

It is observed that heat flux (−θ′(0)) as a function of mi-

cropolar parameterK falls with growing values of fluid pa-

rameter β. Effects for concerning parameters have similar

behavior as in skin friction for both cases of concentration.

5 Concluding Remarks

The aim of this study is to investigate microrotation

effects on mixed convective flow of a Casson fluid induced
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by a stretching sheet. The governing physical problem is

tackled numerically using Runge Kutta Fehlberg scheme

coupled with shooting. The core outcomes of this study

are:

• The velocity profile f ′(η) and microrotation profile

g(η) depict opposite behavior against micropolar pa-

rameter K.

• Microrotation profile g(η) rises with mixed convec-

tive parameter λ while it decreases with Casson fluid

parameter β for strong as well as weak concentra-

tion.

• Skin friction coefficient −f ′′(0) and local Nusselt

number −θ′(0) rise with micropolar parameter K

while decrease with Casson fluid parameter β.

• Higher skin friction coefficient −f ′′(0) and local

Nusselt number −θ′(0) are observed for the case of

strong concentration (n = 0) compared to weak con-

centration (n = 0.5).

Fig. 7 Behavior of skin friction coefficient aganist K for
different values of β.

Fig. 8 Behavior of skin friction coefficient aganist β for
different values of K.

Fig. 9 Behavior of Nusselt number aganist K for different
values of β.

Fig. 10 Behavior of skin friction coefficient aganist β for
different values of K.
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