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Self-Organized Criticality in an Anisotropic Earthquake Model∗
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Abstract We have made an extensive numerical study of a modified model proposed by Olami, Feder, and Christensen
to describe earthquake behavior. Two situations were considered in this paper. One situation is that the energy of the
unstable site is redistributed to its nearest neighbors randomly not averagely and keeps itself to zero. The other situation
is that the energy of the unstable site is redistributed to its nearest neighbors randomly and keeps some energy for itself
instead of reset to zero. Different boundary conditions were considered as well. By analyzing the distribution of
earthquake sizes, we found that self-organized criticality can be excited only in the conservative case or the approximate
conservative case in the above situations. Some evidence indicated that the critical exponent of both above situations
and the original OFC model tend to the same result in the conservative case. The only difference is that the avalanche
size in the original model is bigger. This result may be closer to the real world, after all, every crust plate size is different.
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1 Introduction
Self-organized criticality (SOC) is a key concept as

a possible explanation for the widespread occurrence in
many nature systems that long range correlations in space
and time.[1−5] Earthquakes are probably the most rele-
vant paradigm of SOC that can be observed by humans
on earth. The relevance of SOC to earthquakes was first
pointed out by Bak, Tang, and Wiesenfeld,[1] Sornette
and Sornette.[6] According to this theory, plate tecton-
ics provides energy input at a slow time scale into a spa-
tially extended, dissipative system that can exhibit break-
down events via a chain reaction process of propagating
instabilities in space and time. The empirical Gutenberg-
Richter (GR) law[7] arises from the system of driven plates
building up to a critical state with avalanches of all sizes.
According to the GR law the distribution of earthquake
events is scale free over many orders of magnitude in en-
ergy.

Then Olami, Feder and Christensen (OFC) intro-
duced a nonconservative model on a lattice that displayed
SOC.[8] The OFC model of earthquakes has played an im-
portant role in the context of SOC since 1992. However,
the presence of criticality in the nonconservative version
of the OFC model has been controversial since its intro-
duction and it is still debated.[9−13]

OFC models on different topologies have been investi-
gated in the papers, such as, the annealed random neigh-
bor (ARN) graph model,[14−17] the OFC model on a
quenched random (QR) graph[18] and the effects of small-
world and scale-free topologies on the criticality of the
non-conservative OFC model.[19−24]

Most work in this area is usually focused on their topo-
logical properties[25−29] and homogeneous lattices with or
without periodic boundary conditions. But the real sys-
tems modeled by these objects are not homogeneous. In
a geological fault, for example, the local friction between
the moving plates, which influences both the rate of mo-
tion and the redistribution on the neighbors in the OFC
model, cannot be expected to be a constant value but
should fluctuate according to local variations. Similarly,
the local elasticity of the sheets, which determines how
the energy is transferred from one point to another, is also
expected to be variable. Therefore, a first step is to sim-
ply see how the introduction of quenched disorder in the
simple coupled-map representation for these systems will
affect their dynamical behavior. Some work has already
been done along these lines.

A new earthquake model based on a random network
was studied, on which the toppling mechanism of the sys-
tem is that the force of the unstable site is redistributed to
their nearest neighbors randomly.[30−32] It is shown that
when the system is conservative, the probability distribu-
tion displays power-law behavior. However, it displays no
scaling behavior when the system is nonconservative. It is
like the results in the ARN OFC model. But it is quite dif-
ferent to the model on quenched random graph[18] and the
model on square lattice, both of which display criticality
even the system is dissipated. It seems that the toppling
mechanism of the system has affected the critical behavior
of the system. They also compare the critical behavior of
the model with different number of nearest neighbors. It
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is shown that different spatial topology does not alter the
critical behavior of the system.

Mousseau studied the influence of quenched disorder
on a coupled map model of earthquakes.[33] In his work,
disorder is introduced in the redistribution fraction αi

which now varies from site to site as αi = α + δi, where
δi is a random number taken from a linear distribution
[−δ, δ]. He said that the question of the role of disorder in
dynamical systems is fundamental because most biologi-
cal, neurological, or geological dynamical systems evolve
in the presence of one or another type of disorder.

Janosi and Kertesz studied the effect of randomness in
the threshold for the OFC rule.[34] They found that this
type of disorder destroys criticality and changes the dis-
tribution of avalanche size from power law to exponential.

Ceva looked at uncorrelated and correlated disorder
in the redistribution parameter α.[35] He was interested,
however, in the effects of concentration of defects and not
their amplitude. He found that SOC is stable under small
concentration of defects.

In this work, we investigate the critical behavior on
a modified anisotropic OFC model. Two situations are
considered in this paper. One situation is that the energy
of the unstable site is redistributed to its nearest neigh-
bors randomly not averagely and keeps itself to zero. The
other situation is that the energy of the unstable site is
redistributed to its nearest neighbors randomly and keeps
some energy for itself instead of reset to zero. Different
boundary conditions are considered as well. The rest of
the paper is organized as follows. In Sec. 2, we review the
original OFC model and we point out the main reasons
that have induced us to study the modify OFC model. In
Sec. 3, we investigate the modified model and make com-
parison with other models by analyzing the distribution
of earthquake sizes. Finally, in Sec. 4 we provide brief
discussion and conclusion.

2 Model
The OFC model is defined on a two-dimensional square

lattice of L × L sites. Each site is associated a real con-
tinuous energy Ei. To mimic that the system is driven
continuously and uniformly, the value of Ei increases at
the same rate. In simulations, find the largest value of en-
ergy Emax in the system and increase the energy of all sites
by the same amount Eth−Emax. Therefore, the sites with
the largest energy reaches the threshold value (Ei ≥ Eth)
and becomes unstable. As soon as a site becomes unsta-
ble, i.e., Ei ≥ Eth, the global driving is stopped and the
system evolves according to the following local relaxation
rule

Enn → Enn + αEi, Ei → 0 , (1)

where “nn” stands for the collection of nearest neighbors
to node i. In general, there are 4 of nearest neighbors, and
only the isotropic situation is considered. The parameter
α ∈ [0, 1/4] controls the level of conservation of the dy-
namics, where α = 1/4 corresponds to the conservative
case, while α < 1/4 implies the model is nonconservative.

The toppling of one site triggers an avalanche, that is,
neighbors of this site may become unstable and toppling
propagates in the network. The avalanche is over until
all the sites are below Eth. Then the driving to all sites
recovers. The number of toppling sites during an earth-
quake is defined as the earthquake size S. Open boundary
condition is used in OFC model.[36]

Here we modify the OFC model only in the toppling
rule: when there is an unstable site toppling, the energy of
the site is redistributed to its nearest neighbors randomly
not averagely as follows.

If any Ei ≥ Eth then redistribute the energy on Ei to
its neighbors randomly according to the following rule

Enn → Enn + βnnEi, Ei → 0 ,
q∑

nn=1

βnn = β , (2)

where “nn” stands for the collection of nearest neighbors
to node i, q is the number of nearest neighbors of every
site. The anisotropic situation is considered in this mod-
ified OFC model. The size of parameter βnn is different
for nearest neighbors. The parameter β ∈ [0, 1] controls
the level of conservation of the dynamics that is equiva-
lent to 4α in the OFC model, where β = 1 corresponds
to the conservative case, while β < 1 implies the model is
nonconservative. The parameter βnn at each site is chosen
randomly from a uniform distribution between 0 and β,
and the sum is equal to β. Details as follow,

β11 ∈ (0, β), β12 ∈ (0, β − β11) ,

β21 ∈ (0, β − (β11 + β12)) ,

β22 = β − (β11 + β12 + β21) . (3)

The other model that differs from above model only
in the toppling rule: when there is an unstable site, the
energy of the site is redistributed to its nearest neighbors
randomly and keeps some energy for itself instead of reset
to zero, that is not Eqs. (2), (3) but Eqs. (4), (5), as follow

Enn → Enn + βnnEi, Ei → β00Ei ,

β00 +

q∑
nn=1

βnn = β , (4)

where “nn” stands for the collection of nearest neighbors
to node i, q is the number of nearest neighbors of every
site. β00 is defined as follow

β11 ∈ (0, β), β12 ∈ (0, β − β11) ,

β21 ∈ (0, β − (β11 + β12)) ,

β22 ∈ (0, β − (β11 + β12 + β21)) ,

β00 = β − (β11 + β12 + β21 + β22) . (5)

Table 1 The different of the two models.

The OFC model The modify OFC model

isotropic anisotropic anisotropic

Ei → 0 Ei → 0 Ei → β00Ei∑q
nn=1 αnn = 4α

∑q
nn=1 βnn = β β00 +

∑q
nn=1 βnn = β

To completely define the model, we need to consider
the boundary conditions. We care about the open and
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periodic boundary conditions in our models.[36−39] The
energy αE of an unstable site at boundary is lost in the
case of open boundary conditions. Periodic boundary con-
ditions mean the energy is not lost, it is transferred to the
other side, like a ring. In Table 1, we list the different of
those models to be clearly understood.

In a system of SOC, the distribution of earthquake
sizes is a power law function. The power-law exponent τ
is defined as

P (S) ∼ S−τ . (6)

In simulation, we will be interested in the distribution of
avalanche sizes P (S).

3 Simulations and Results

3.1 The One Case of the Modified OFC Model

Now we study the one case of the modified OFC model
(Case 1). The energy of the unstable site is redistributed
to its nearest neighbors randomly not averagely and keeps
itself to zero. In comparison to the original OFC model
we plot the distribution of avalanche sizes in Fig. 1. The
statistics are collected in the critical state for 109 non-zero
avalanches for each system size.

Fig. 1 (Color online) Avalanche size distribution with
open boundary conditions for (a) different the value of
the parameter β with the system size N = 352. Differ-
ent curves correspond to β = 0.40, 0.60, 0.80, 0.90, 0.95,
and 1.0, from left to right. For comparison purposes, the
original OFC model of α = 0.25 is shown in the direction
of the arrow. (b) Distribution of earthquake size for the
different system size with β = 1.0.

In Fig. 1(a), we show that the earthquakes size dis-
tribution P (S) for different values of the dissipation pa-
rameter β, in the network with N = 352 and with
open boundary conditions. Different curves correspond to

β = 0.40, 0.60, 0.80, 0.90, 0.95, and 1.0, from left to right.
We can see that the model transits from non-SOC to SOC
behavior with the increase of the parameter β. Power-law
fit is shown as red solid line, the slope of the straight line
is τ = 1.286 58 for β = 1.0. It is like the critical exponent
of the original OFC model. For comparison purposes, the
original OFC model of α = 0.25 is shown in the direction
of the arrow.

In OFC model, the SOC states exhibit that the distri-
bution is a power law function with an exponential cut-
off. The largest avalanche size in OFC model is about
7000. In the modified OFC model, the distribution of
avalanche size depends on the dissipation parameter β.
The largest avalanche size in modified OFC model is about
1000, which is close to the system size N .

Fig. 2 (Color online) (a) Simulation result for the prob-
ability density of having an earthquake of energy E as a
function of E for a dissipation parameter β with N = 352

and with periodic boundary conditions. Different curves
correspond to β = 0.40, 0.60, 0.80, 0.90, 0.95, and 0.98,
from left to right. The fitted curve is shown as red solid
line. (b) Distribution of earthquake size for the different
system size with β = 0.95. Different curves correspond
to N = 152, 252, 352, 502, and 1002.

It is not like the result of the original OFC model.
The original OFC model exhibits SOC behavior for a
wide range of α values and the exponent τ depends on α.
However, we find that this modified OFC model exhibits
power law distribution when the value of β tends to 1.
It is similar with the model on RN[14,16] and small-world
networks.[19,23−24]

In Fig. 1(b), we show that the earthquakes size distri-
bution P (S) for different size of the system N , different
curves correspond to N = 152, 252, 352, and 502, from left
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to right. Size effect is present in Fig. 1(b). It is like the
result of the original OFC model. The scaling of the cutoff
in the energy distribution as a function of the system size
for β = 1.0.

Now we plot the distribution of earthquake size for
different values of β with periodic boundary conditions.
As shown in Fig. 2(a), we noticed that the model transits
from non-SOC to SOC behavior with the increase of the
dissipation parameter β. Power-law fit is shown as red
solid line, the slope of the straight line is τ = 1.397 15 for
N = 352 and β = 0.98. The largest avalanche size is about
103 in the modified OFC model with β < 1.0. Although
the system size is N = 352, the largest size of avalanche is
very large with periodic boundary conditions and β = 1.0.
The largest size of avalanche is 108 much larger than 103.
There is not much difference in the results under different
boundary conditions, except in β = 1.0. The result is only
a slight difference in the critical exponent. As shown in
Fig. 2(b), the simulation results of avalanche size distribu-
tion in systems with dissipation parameter β = 0.95 and
network size N = 152, 252, 352,502, and 1002, respectively.
Although system sizes range from 152 to 1002, the change
of the largest size of avalanche is very small.

3.2 The Other Case of the Modified OFC Model

Fig. 3 (Color online) Avalanche size distribution with
open boundary conditions for (a) different the value of
the parameter β with the system size N = 352. Differ-
ent curves correspond to β = 0.40, 0.60, 0.80, 0.90, 0.95,
and 1.0, from left to right. For comparison purposes, the
original OFC model of α = 0.25 is shown in the direction
of the arrow. (b) Distribution of earthquake size for the
different system size with β = 1.0. The fitted curve is
shown as red solid line.

Next, we study the other case of the modified OFC
model (Case 2). The energy of the unstable site is re-

distributed to its nearest neighbors randomly and keeps
some energy for itself instead of reset to zero.

In Fig. 3(a), we show that the earthquakes size dis-
tribution P (S) for different values of the dissipation pa-
rameter β, in the network with N = 352 and with
open boundary conditions. Different curves correspond to
β = 0.40, 0.60, 0.80, 0.90, 0.95, and 1.0, from left to right.
It is shown that the distribution of avalanche size depends
on the dissipation parameter β. We can see that there is
criticality only in the conservative case. Power-law fit is
shown as red solid line, the slope of the straight line is
τ = 1.319 19 for β = 1.0. It is like the critical exponent
of the original OFC model. For comparison purposes, the
original OFC model of α = 0.25 is shown in the direction
of the arrow.

The result of this case and the original OFC model
tend to the same in the conservative case. The only dif-
ference is that the avalanche size in the original model is
bigger. This result may be closer to the actual situation,
after all, every crust plate size is different.

In Fig. 3(b), we show that the earthquakes size distri-
bution P (S) for different size of the system N , different
curves correspond to N = 152, 252, 352 and 502, from left
to right. Size effect is strikingly present here in Fig. 3(b).
As L or β increases, the behavior slowly converges to a
power law distribution of earthquake sizes P (s) ∼ s−τ

with an exponent τ = 1.319 19.

Fig. 4 (Color online) (a) Simulation result for the prob-
ability density of having an earthquake of energy E as a
function of E for a dissipation parameter β with N = 352

and with periodic boundary conditions. Different curves
correspond to β = 0.40, 0.60, 0.80, 0.90, 0.95, and 0.98,
from left to right. The fitted curve is shown as red solid
line. (b) Distribution of earthquake size for the different
system size with β = 0.95. Different curves correspond
to N = 152, 252, 352, and 502.
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Now we plot the distribution of earthquake size for
different values of β with periodic boundary conditions.
As shown in Fig. 4(a), we noticed that the model transits
from non-SOC to SOC behavior with the increase of the
dissipation parameter β. Power-law fit is shown as red
solid line, the slope of the straights line is τ = 1.427 78
for N = 352 and β = 0.98. Similarly, the largest size of
avalanche is 108 much larger than normal 103 for β = 1.0.

As shown in Fig. 4(b), the simulation results of
avalanche size distribution in systems with dissipation pa-
rameter β = 0.95 and network size N = 152, 252, 352, and
502, respectively. Although system sizes range from 152

to 502, the change of the largest size of avalanche is very
small. Some impact has produced on the distribution of
avalanche size for the different system size N . We can see
that size effect is exhibited but not particularly strong in
Fig. 4(b). We find that, as L or β increases, the behavior
slowly converges to a power law distribution of earthquake
sizes P (s) ∼ s−τ with an exponent τ = 1.427 78.

4 Conclusions
In summary, we have made an extensive numerical

study of a modified anisotropic model proposed by Olami,
Feder, and Christensen to describe earthquake behavior.
The toppling rule is different with that of the OFC model.
Two situations were considered in this paper. One case is
that the energy of the unstable site is redistributed to its
nearest neighbors randomly not averagely and keeps itself
to zero. The other case is that the energy of the unstable
site is redistributed to its nearest neighbors randomly and
keeps some energy for itself instead of reset to zero. Dif-
ferent boundary conditions were considered as well. By
analyzing the distribution of earthquake sizes, we found
that both above cases can exhibit self-organized criticality
only in the conservative case or the approximate conserva-
tive case. Some evidence indicated that the critical expo-
nent of both above situations and the original OFC model
tend to the same result in the conservative case. The only
difference is that the avalanche size in the original model
is bigger. It is different from the result of original OFC
model. The original OFC model exhibits SOC behavior
for a wide range of α values and the exponent τ depend
on α. This result may be closer to the real world, after
all, every crust plate size is different.

References
[1] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59

(1987) 381.

[2] C. Haldeman and J. M. Beggs, Phys. Rev. Lett. 94 (2005)
058101.

[3] S. J. Wang and C. Zhou, New J. Phys. 14 (2012) 023005.

[4] D. Plenz and H. G. Schuster, Criticality in Neural Sys-
tems, Wiley, New York (2014).

[5] S. J. Wang, G. Ouyang, J. Guang, et al., Phys. Rev. Lett.
116 (2016) 018101.

[6] A. Sornette and D. Sornette, Europhys. Lett. 9 (1989)
197.

[7] B. Gutenberg and C. F. Richter, Ann. Geofis. 9 (1956) 1.

[8] Z. Olami, H. J. S. Feder, and K. Christensen, Phys. Rev.
Lett. 68 (1992) 1244.

[9] W. Klein and J. Rundle, Phys. Rev. Lett. 71 (1993) 1288.

[10] K. Christensen, Phys. Rev. Lett. 71 (1993) 1289.

[11] J. X. Carvalho and C. P. C. Prado, Phys. Rev. Lett. 84
(2000) 4006.

[12] J. X. Carvalho and C. P. C. Prado, Phys. Rev. Lett. 87
(2001) 039802.

[13] K. Christensen, D. Hamon, H.J. Jensen, and S. Lise,
Phys. Rev. Lett. 87 (2001) 039801.

[14] S. Lise and H. J. Jensen, Phys. Rev. Lett. 76 (1996) 2326.

[15] M. L. Chabanol and V. Hakim, Phys. Rev. E 56 (1997)
R2343.

[16] H. M. Broker and P. Grassberger, Phys. Rev. E 56 (1997)
3944.

[17] O. Kinouchi, S. T. R. Pinho, and C. P. C. Prado, Phys.
Rev. E 58 (1998) 3997.

[18] S. Lise and M. Paczuski, Phys. Rev. Lett. 88 (2002)
228301.

[19] F. Caruso, V. Latora, A. Pluchino, et al., Eur. Phys. J. B
50 (2006) 243.

[20] F. Caruso, V. Latora, and A. Rapisarda, Complexity,
Metastability and Nonextensivity, World Scientific, Sin-
gapore (2005) 355.

[21] N. Masuda, H. Miwa, and N. Konno, Phys. Rev. E 71
(2005) 036108.

[22] A. F. Rozenfeld, R. Cohen, D. ben Avraham, and S.
Havlin, Phys. Rev. Lett. 89 (2002) 218701.

[23] Min Lin, Xiao-Wei Zhao, and Tian-Lun Chen, Commun.
Theor. Phys. 41 (2004) 557.

[24] Min Lin, Gang Wang, and Tian-Lun Chen, Commun.
Theor. Phys. 46 (2006) 1011.

[25] P. Rattana, L. Berthouze, and I. Z. Kiss, Phys. Rev. E
90 (2014) 052806.

[26] R. Dominguez, K. Tiampo, C. A. Serino, and W. Klein,
Phys. Rev. E 87 (2013) 022809.

[27] D. Markovic and C. Gros, Phys. Rep. 536 (2014) 41.
[28] L. De Arcangelis, C. Godano, J. R. Grasso, and E. Lip-

piello, Phys. Rep. 628 (2016) 1.
[29] A. A. Perkins, J. Galeano, and J. M. Pastor, Phys. Rev.

E 94 (2016) 052304.
[30] Duan-Ming Zhang, Fan Sun, et al., Commun. Theor.

Phys. 45 (2006) 293.
[31] Duan-Ming Zhang, Fan Sun, et al., Commun. Theor.

Phys. 46 (2006) 261.
[32] Fan Sun and Duan-Ming Zhang, Commun. Theor. Phys.

50 (2008) 417.
[33] N. Mousseau, Phys. Rev. Lett. 77 (1996) 968.
[34] I. M. Jánosi and J. Kertész, Physica (Amsterdam) 200A

(1993) 179.
[35] H. Ceva, Phys. Rev. E 52 (1995) 154.
[36] S. Lise and M. Paczuski, Phys. Rev. E 63 (2001) 036111.
[37] J. E. S. Socolar, G. Grinstein, and C. Jayaprakash, Phys.

Rev. E 47 (1993) 2366.
[38] P. Grassberger, Phys. Rev. E 49 (1994) 2436.

[39] A. A. Middleton and C. Tang, Phys. Rev. Lett. 74 (1995)

742.


