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Ordinary Mode Instability in a Cairns Distributed Electron Plasma
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Abstract Employing the linearized Vlasov-Maxwell equations, a generalized dispersion relation for the ordinary
mode is derived by employing the Cairns distribution function. The instability of the mode and its threshold condition
is investigated. It is found that the temperature anisotropy χ = T∥/T⊥ > 1 required to excite the instability varies with
density values whereas the growth rate is dependent on various parameters like non-thermality Λ, equilibrium number
density n0 and temperature anisotropy. It is found that with the increase in the values of any of the parameters Λ, n0 and
χ, the growth rate is enhanced and the k-domain is enlarged. The results are applicable for space plasma environments
like solar wind.
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1 Introduction

Extensive studies have appeared to investigate the par-

ticle velocity anisotropy and relaxation mechanism during

the last few decades in space plasmas.[1−2] It has been ob-

served that the distribution function of particles becomes

anisotropic in a magnetized and collisionless plasma. Such

anisotropic effects in space plasmas are responsible for pro-

cesses like wave instabilities and magnetic expansion or

compression.[1−2] These plasma instabilities produced by

the temperature anisotropy may grow either in perpen-

dicular or parallel direction (with respect to the ambient

magnetic field).[3] If the wave-vector is perpendicular to

the ambient magnetic field B0 (i.e., k⊥B0), the driver of

the instability along the ambient magnetic field must ex-

ceed the perpendicular kinetic energy of plasma particles

such as in temperature anisotropy, T∥ > T⊥, or a stream-

ing beam of plasma particles (vb ∥ B0). These conditions

frequently occur in the solar wind.[3−4] According to both

theory and observation, a well known characteristic of so-

lar wind plasma is the presence of an anisotropic velocity

distribution function.[5−11]

The ordinary wave (ordinary mode) is a high fre-

quency, linearly polarized, perpendicularly propagating

(k ⊥ B0 and E1 ∥ B0) electromagnetic wave. Due to a

large number of applications in space plasmas the ordinary

mode instability has received special attention,[3−4,7,12−16]

and the mode has been studied both in classical and de-

generate plasmas .[3−4,7,12−18] For instance, Davidson and

Wu discussed the ordinary mode instability for a high beta

plasma and observed that the mode becomes unstable for

T∥ > T⊥ in a high beta plasma.[19] Nambu investigated the

dispersion relation of the ordinary mode by considering

non-uniformities of magnetic field (∇B), density (∇N),

and temperature (∇T ). It was noticed that in an inho-

mogeneous plasma the ordinary mode becomes unstable

under the condition T⊥ > T∥, in contrast to the previ-

ous results i.e., T∥ > T⊥.
[20] Bornatici et al., investigated

the ordinary mode instability for counter streaming elec-

tron plasma with temperature anisotropy. It was noticed

that the perpendicular temperature stablizes whereas the

parallel temperature enhances the instability.[21] Recently,

the ordinary mode instability has been discussed both nu-

merically and analytically by taking different limits of the

plasma beta and temperature anisotropy.[3−4,7,12−16]

In space and laboratory plasmas, energetic particles

are present that result in long-tailed distributions. These

distributions show deviations from the Maxwellian equi-

librium and may exist in low-density plasma in the Uni-

verse, where collisions between charged particles are quite

rare.[3,8,22] In order to model these high energy tails (ener-

getic particles) with excess of energetic particles, Cairns et

al., introduced a distribution function (observed in space

plasmas) which is given as

f0(v⊥, v∥) =
1

π3/2v2th⊥vth∥(3Λ + 1)

(
1+Λ

{ v4⊥
v4th⊥

+
v4∥

v4th∥

})
× exp

(
− v2⊥

v2th⊥
−

v2∥

v2th∥

)
, (1)

where vth⊥ (vth⊥ =
√
2kBT⊥/m) and vth∥ (vth∥ =√

2kBT∥/m) are the perpendicular and parallel thermal

velocities of the electrons relative to the ambient mag-

netic field, Λ is a constant (non-thermality parameter),

which shows deviation from the Maxwellian distribution

and determines the population of energetic nonthermal

electrons.[23] The Cairns distribution function is like a
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Gaussian distribution, which develops wings or shoulders

at larger values of Λ. So the Gaussian shape is deformed

for Λ ̸= 0 and different peaks are obtained (correspond-

ing to different values of non-thermality parameter).[24−25]

A plot of normalized Cairns distribution function for dif-

ferent values of Λ is shown in Fig. 1. Various applica-

tions of the Cairns distribution function have been re-

ported to study the non-linear properties of the electro-

static waves in Refs. [23, 26–27]. The effect of ener-

getic electrons on the non-linear ion acoustic structures

has been observed in Ref. [23]. It was noticed that in

the presence of non-thermal electrons the nature of ion

sound solitary structures is changed and solitons with

both the negative and positive density perturbations can

exist.[23] Further, Habumugisha et al., investigated the lin-

ear dust ion acoustic (DIA) solitary waves in a complex

and unmagnetized plasma consisting of nonthermal elec-

trons (Cairns distributed), immobile dust particles, ions

and beam fluids. It was noticed that for large wave speeds,

the Fast, Slow, and Ion-acoustic (stable) modes propa-

gate as solitary waves in the beam plasma.[24] Very re-

cently, for the Cairns distributed plasma Whistler insta-

bility has been discussed showing that the anisotropy and

non thermal parameter significantly affect the growth rate

of the instability.[28] The Cairns distribution exhibits an

enhanced high energy tail, superimposed on a Maxwellian-

like low energy component. It therefore serves as a useful

theoretical model for the family of non-Maxwellian or non-

thermal space plasmas and has been used extensively to

understand the waves and instabilities phenomena in the

space plasmas.[24,26]

From the above literature, one may notice that

the electromagnetic wave instabilities driven by electron

temperature anisotropy have been well studied for the

bi-Maxwellian distributed space plasma environments.

Therefore, it is very interesting to examine the effect of

nonthermal electrons on the dispersive properties of elec-

tromagnetic wave instabilities. To the best of our knowl-

edge, the wave instabilities induced due to the tempera-

ture anisotropy such that T∥ > T⊥ in a Cairns distributed

plasmas is not yet explored. In the present work we focus

on that and examine the ordinary mode instability in the

presence of temperature anisotropy (T∥ > T⊥) as well as

high energy tails in the space plasma environments like

solar wind.

Fig. 1 (Color online) Plot of normalized Cairns distri-
bution function against v for different values of Λ.

The plan of the present paper is as follows: In Sec. 2,

we present the mathematical formalism to investigate the

dispersion relation of the ordinary mode in a Cairns dis-

tributed electron plasma. In Sec. 3, we present the insta-

bility analysis of the mode and give graphical analysis of

the dispersion relations. Finally, in Sec. 4 we present a

summary of the manuscript.

2 Mathematical Formalism and Dispersion
Relation (Ordinary Mode)

In order to study the dispersion characteristics of

the ordinary mode we consider a collisionless electron-ion

plasma embedded in an external magnetic field, described

by a set of Vlasov-Maxwell equations:

∂f

∂t
+ v · ∂f

∂x
+

q

m

(
E +

v × B

c

)
· ∂f
∂v

= 0 , (2)

∇×E = −1

c

∂B

∂t
, (3)

∇×B =
4πJ

c
+

1

c

∂E

∂t
, (4)

where f is an arbitrary velocity distribution function and

c is speed of light. For the ordinary mode E1 ∥ B0 and

k⊥ ⊥ B0, where B0 = B0ẑ. We have assumed that only

electrons take part in the wave dynamics and the ions

remain in the background. After linearizing and solving

the above equations, we get generalized expression for the

ordinary mode:[29]

ω2 − c2k2⊥ − ω2
p + ω2

p

∞∑
n=−∞

nωc

ω − nωc

∫ ∞

−∞
J2
n

(k⊥v⊥
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) v2∥
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∂f0
∂v⊥

d3v = 0 , (5)

where ω is wave frequency, k is wavenumber, ωp =
√
4πn0e2/m is the plasma frequency, ωc = eB0/mc is the cyclotron

frequency, Jn(k⊥v⊥/ωc) is the Bessel function of first kind and∫
d3v =

∫ 2π

0

dϕ

∫ ∞

0

v⊥dv⊥

∫ ∞

−∞
dv∥ . (6)
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Equation (5) can be written as

ω2 − c2k2⊥ − ω2
p + 2πω2

p

∞∑
n=1

2n2ω2
c

ω2 − n2ω2
c

∫ ∞

−∞
v2∥dv∥

∫ ∞

0

J2
n

(k⊥v⊥
ωc

) ∂f0
∂v⊥

dv⊥ = 0 , (7)

where f0 is an equilibrium distribution function. This is the dispersion relation of ordinary mode for an arbitrary

anisotropic velocity distribution function. Here we are interested to study the effects of anisotropy and excess of

energetic particles on dispersion properties of ordinary mode. As we mentioned in Sec. 1. such effects are observed

in the space plasma environments and well described through the Cairns distribution function. After using Cairns

distribution function (Eq. (1)) and performing integrations of Eq. (7), we get
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p

4
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2
c )

(3Λ + 1)

[{
4 +

(
15 + 2

(k4⊥v4th⊥
ω4
c

)
+ 4n+ 4n2 − 4

(k2⊥v2th⊥
ω2
c

)
(1 + n)

)
Λ
}
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,

where In(k⊥vth⊥/ωc) is the modified Bessel function of the first kind. The above equation (Eq. (8)) represents the

dispersion relation of the ordinary mode in an anisotropic Cairns distributed plasma. For Λ = 0, we get the standard

result of the ordinary mode instability as reported in Ref. [29].

3 Instability Analysis

In the spectrum of perpendicularly propagating modes, it has been observed that only the ordinary mode is affected

by the temperature anisotropy. In order to study the growth rate of the ordinary mode we restrict ourselves to n = 1.

Therefore the Eq. (8) reduces to
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p − χ
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p

4
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À = 0 , (9)

where
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By solving the biquadratic Eq. (9), we obtain

2ω2 = (ω2
p + ω2

c + c2k2⊥)±

√
(ω2

p + ω2
c + c2k2⊥)

2 − 4ω2
c

{
c2k2⊥ + ω2

p

(
1− χÀ

4

)}
. (10)

For negative root if 4ω2
c{c2k2⊥ + ω2

p(1 − χÀ/4)} < 0, the

ordinary mode becomes unstable. The condition for in-

stability is given by

c2k2⊥
ω2
p

− χÀ

4
+ 1 < 0 . (11)

In order to perform the graphical analysis of the growth

rate of ordinary mode instability we have chosen param-

eters that are typically found in space plasmas like solar

wind.

For the choice of parameters n0 = 109 cm−3, B0 =

10 G, Λ = 0.2 and vth⊥/c = 0.05, it is found that the

instability starts from χ ≥ 12 as shown in Fig. 2. How-

ever, if we increase the values of density from 109 cm−3 to

5×109 cm−3 the instability starts even at lower values i.e.,

at χ = 5 as shown in Fig. 3. Thus we can say that for a

low density region large values of temperature anisotropy

are required to make the mode unstable but instead in the

high density region even smaller values of anisotropy can

excite the mode.

Further, a comparison of Figs. 4 and 5 shows that

at fixed values of temperature anisotropy for instance,

χ = 20, the maximum value of growth rate for Λ = 0.1

is 0.028 whereas for Λ = 0.2, the maximum growth rate

is 0.032, which means that the growth rate has been in-

creased 4 times due to an excess of energetic particles. The

green line shows Maxwellian result i.e., Λ = 0, the value of

temperature anisotropy that we have used for Maxwellian

case is χ = 18.
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Fig. 2 (Color online) Effect of temperature anisotropy on
the growth rate of the ordinary mode (with fixed value of
density, ambient magnetic field and non thermality parame-
ter i.e., n0 = 109 cm−3 and B0 = 10 Gauss, Λ = 0.1).

Fig. 3 (Color online) Effect of temperature anisotropy on
the growth rate of the ordinary mode (with fixed value of
ambient magnetic field and non thermality parameter i.e.,
B0 = 10 Gauss, Λ = 0.2.)

Fig. 4 (Color online) Effect of variation of non thermal-
ity parameter on the ordinary mode instability (with fixed
value of density, ambient magnetic field and temperature
anisotropy i.e., n0 = 109 cm−3 and B0 = 10 Gauss, χ = 16).
The green line is for Maxwellian distribution wherein Λ = 0.

Fig. 5 (Color online) Effect of variation of non thermal-
ity parameter on the ordinary mode instability (with fixed
value of density, ambient magnetic field and temperature
anisotropy i.e., n0 = 109 cm−3 and B0 = 10 Gauss, χ = 18).
The green line is for Maxwellian distribution wherein Λ = 0.

Fig. 6 (Color online) Effect of variation of non thermal-
ity parameter on the ordinary mode instability (with fixed
value of density, ambient magnetic field and temperature
anisotropy i.e., n0 = 109 cm−3 and B0 = 10 Gauss, χ = 20).
The green line is for Maxwellian distribution wherein Λ = 0.

Fig. 7 (Color online) Effect of density variation on the or-
dinary mode instability (with fixed value of ambient mag-
netic field and temperature anisotropy χ = 20). The green
line is for Maxwellian distribution wherein Λ = 0.



No. 6 Communications in Theoretical Physics 703

From Figs. 4 and 5 it can be seen that the growth rate

in the Cairns distributed plasma is larger than in the

Maxwellian plasma which means that the presence of en-

ergetic particles support the anisotropy to enhance the

growth rate of instability. Figure 6 shows that the effect

of non-thermality parameter Λ on the growth rate of the

instability. It can be seen that by increasing the number of

energetic electrons (Λ), the growth rate is increased and

the instability is extended to large wave numbers. Be-

cause due to excess of energetic electrons, the wave will

get more energy from the system. Figure 7 shows how the

equilibrium number density (n0) affects the growth rate of

the instability i.e., with the increase in n0, the magnitude

of the growth rate and k-domain is increased.

4 Summary

Using the linearized Vlasov-Maxwell equations, we

have derived the generalized dispersion relation for the or-

dinary mode alongwith the instability and threshold con-

dition in the Cairns distributed plasma. In the instability

analysis we find that in the low density region the larger

values of anisotropy are required to excite the ordinary

mode instability whereas in the high density regimes even

smaller values of anisotropy can excite the mode. Fur-

ther, we have investigated the effects of the population

of the energetic electrons (Λ), equilibrium number den-

sity (n0) and temperature ratio (χ) on the growth rate of

the ordinary mode instability. The parameter Λ supports

temperature anisotropic factor χ to enhance the growth

rate of the instability. We have also found that all these

parameters enhance the growth rate and enlarge the do-

main of the wave number. Moreover, we have also found

that the growth rate of the ordinary mode instability is

greater for the Cairns distributed electrons as compared

to their Maxwellian counterparts. So, our findings may be

helpful to explain the mechanism of waves and instabili-

ties in the space plasma environments, where one comes

across velocity distributions of such types.
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