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Cylindrical Three-Dimensional Dust-Ion Acoustic Propagation in Plasmas
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Abstract Wave properties of solitons in an unmagnetized four-component dusty plasma system contains isothermal
distributed electrons, mobile ions, and negative-positive dusty grains have been examined. To study DIA wave properties,
a reductive perturbation (RP) analysis is used. By a reductive perturbation (RP) analysis under convenient coordinate
transformation, the three dimension Kadomtsev-Petviashvili equation in cylindrical coordinates is obtained. The effects
of dust grain charge on soliton pulse structures are studied. More specifically, solitary profile depending on the axial,
radial, and polar angle coordinates with time is discussed. This investigation may be viable in plasmas of the Earth’s
mesosphere.
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1 Introduction

No doubt, studying of nonlinear waves and their struc-
tures in plasmas with charged dust grains is one of im-
portant activities during the last few decades for ex-
plaining many systems in astrophysics (Earth magne-
tosphere, cometary tails, nebulas, mesosphere),[1−4] as
well as in the laboratory.[5−6] Moreover, it has remark-
able applications in fiber optics, plasmas of semiconduc-
tor, and dust-crystals.[7−9] The charged grains in plasmas
change plasma features, and define new types of wave
phenomena.[10−13] Many investigations are made to ex-
pound the applications of nonlinear properties in astro-
physics and space dust plasmas.[14−16] It has been re-
ported that dusty grains in multicomponent plasmas in-
fluenced the collective interactions in plasmas[17] and the
variation of dust charge modified shock features.[18−20]

Many articles discussed the negative dusty plasma appli-
cations in space.[21−22] On the other hand, in other stud-
ies, both negative-positive grains are taken into account
in space plasma[23−24] and in plasma laboratories.[25] On
the other hand, a new dust grain model has been ap-
proached for cometary plasmas having opposite charges
polarity in the depletion of electrons and ions.[26] Later,
plasma containing ions, electrons, grains with positively-
negatively charged was inspected.[27] It was investigated
that, new positively grain component caused the existence
of twofold solitary potentials. Furthermore, shock be-
havior in inhomogeneous plasmas with ionizing source is
examined.[28] They reported that, charge polarity fluctu-
ation of dusty charge improved the monotonic character-

istics of shock waves. However, many of these studies are

regarded to the unbounded planar geometry. This is not

true for space and laboratory plasma. So we have taken

the non-planar form of cylindrical geometry into account.

Several theoretical studies in non-planar geometry on the

dust plasmas features have been deliberated.[29−32] A mul-

tidimensional cylindrical form of Kadomtsev-Petviashvili

equation (CKP) in dusty plasmas with two superthermal-

ity distributed temperature ions has been introduced.[32]

Finally, El-Bedwehy et al. investigated CKP equation in a

plasma of two charged dust grains.[33] They examined fea-

tures of soliton formation that depends on with the polar,

radial and axial coordinates.

Our article is to explore the non-planar (cylindrical)

three-dimensional DIAWs in four components dust plasma

system contains isothermal electrons, mobile ions and

negative-positive dust grains. We study the effects of ion

to electron number density ratio, negative dust grain to

electron density ratio and positive grain with an electron

number density ratio on nonlinear wave phase speed as

well as on the pulse width and amplitude. In addition,

the effect of non-planar geometry on the pulse profile is

studied. The organization of this paper is as follows. In

Sec. 2, we present model equations. In Sec. 3, the deriva-

tion of CKP equation is present. Its solution is given in

Sec. 4. Section 5 is devoted for results and discussion.

2 System of Equations

Consider a three-dimensional, unmagnetized dusty

plasma system whose constituents is isothermal dis-
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tributed electrons, mobile ions, negative and positive

dusty grains. The three-dimensional continuity equations

for mobile components are given by

∂ni

∂t
+∇ · (niui) = 0 ,

∂nn

∂t
+∇ · (nnun) = 0 ,

∂np

∂t
+∇ · (npup) = 0 . (1)

The corresponding momentum equations are,( ∂

∂t
+ ui · ∇

)
ui +∇ϕ = 0 ,( ∂

∂t
+ un · ∇

)
un − µ∇ϕ = 0 ,( ∂

∂t
+ up

∂

∂x

)
up + α∇ϕ = 0 . (2)

These equations are supplemented by Poisson’s equa-

tion:

∇2ϕ = νnn − ρni − ηnp + exp(ϕ) . (3)

In the above equations nj (j = i, n, p, e) are the per-

turbed number densities and ni0, nn0, np0, and ne0 are the

related equilibrium values. Also uj (j = i, n, p) are the ion,

negative and positive dusty plasma velocities, respectively,

normalized by the ion sound velocity (KBTe/mi)
1/2, ϕ is

the electrostatic potential and normalized by (KBTe/e),

time variable t and space coordinate are normalized by

inverse of the plasma frequency ω−1
pe = (mi/4πe

2ne0)
1/2

and electron Debye length λd = (KBTe/4πe
2ne0)

1/2, re-

spectively, µ = Znmi/mn, α = Zpmi/mp, Here, KB and

Te are Boltzmann constant and temperature of electron, e

the electronic charge, mj (j = i, n, p) denote ion, negative

and positive dust masses respectively.

From the charge neutrality condition, we have

ν + 1 = ρ+ η , (4)

with

ν = Znnn0/ne0 , ρ = ni0/ne0 , η = Zpnp0/ne0 ,

where Zn and Zp are charge numbers of negative and pos-

itive grains, respectively.

3 Nonlinear Calculations

To study DIA wave properties, a reductive perturba-

tion (RP) analysis is used.[34] We introduce the new inde-

pendent variables:[35−36]

R = ϵ1/2(r−λt) , Θ = ϵ−1/2θ , Z = ϵz , T = ϵ3/2t , (5)

where ϵ is a small parameter measures the degree of per-

turbation and the λ is the wave propagation velocity. The

dependent variables in the model are expanded in the pow-

ers of ϵ as

nj = 1 + ϵn
(1)
j + ϵ2n

(2)
j + · · · ,

uj = ϵu
(1)
j + ϵ2u

(2)
j + · · · ,

vj = ϵ3/2v
(1)
j + ϵ5/2v

(2)
j + · · · ,

wj = ϵ3/2w
(1)
j + ϵ5/2w

(2)
j + · · · ,

ϕ = ϵϕ(1) + ϵ2ϕ(2) + · · · (6)

where uj , vj , and wj are the ion, negative and positive
dust velocities in R, Θ, and Z directions, respectively.
Substituting Eqs. (5) and (6) to Eqs. (1)–(3), the first-
order in ϵ for ion are

n
(1)
i =

1

λ2
ϕ(1) , u

(1)
i =

1

λ
ϕ(1) ,

∂v
(1)
i

∂R
=

1

Tλ2

∂ϕ(1)

∂Θ
,

∂w
(1)
i

∂R
=

1

λ

∂ϕ(1)

∂Z
, (7)

whereas for negative dust are given by

n(1)
n = − µ

λ2
ϕ(1) , u(1)

n = −µ

λ
ϕ(1) ,

∂v
(1)
n

∂R
= − µ

Tλ2

∂ϕ(1)

∂Θ
,

∂w
(1)
n

∂R
= −µ

λ

∂ϕ(1)

∂Z
, (8)

and for positive dust are given by

n(1)
p =

α

λ2
ϕ(1) , u(1)

p =
α

λ
ϕ(1) ,

∂v
(1)
p

∂R
=

α

Tλ2

∂ϕ(1)

∂Θ
,

∂w
(1)
p

∂R
=

α

λ

∂ϕ(1)

∂Z
. (9)

Poisson equation leads to the compatibility condition:

λ2 = νµ+ ηα+ ρ . (10)

At the next order in ε, the evolution equation for the
first order perturbed electrostatic potential in the form

∂

∂R

(∂ϕ(1)

∂T
+

ϕ(1)

2T
+Aϕ(1) ∂ϕ

(1)

∂R
+B

∂3ϕ(1)

∂R3

)
+

1

2λT 2

∂2ϕ(1)

∂Θ2
+

λ

2

∂2ϕ(1)

∂Z2
= 0 . (11)

The nonlinear and the dispersion coefficients A and B
are given by

A =
3

2λ3
(ρ− νµ2 + ηα2 − λ4/3) , B =

λ

2
. (12)

Equation (11) is a 3D-CKP equation for dust-ion
acoustic waves. If we neglect Z and Θ dependence,
Eq. (11) is reduced to KdV equation.

4 3D-CKP Solution
In order to solve Eq. (11), the generalized expansion

method is used.[37] According to the transformation

η = LrR+ LzZ − T
(λ
2
LrΘ

2 + U0

)
,

the exact solution of Eq. (11) is given by[31−32,37]

ϕ = ϕ(1) = ϕ0sech
2
[ η
∆

]
, (14)

where, the amplitude ϕ0 and the width ∆ are given by

ϕ0 =
3Γλ

2A L2
r

, ∆ =

√
8B

Γλ
, (15)

with

Γ = L2
r +

2LrU0

λ
− 1 , (16)

while Lr and Lz are the direction cosines in R and Z axes,
with condition L2

r+ L2
z = 1 and U0 is an arbitrary con-

stant. Also note that the product ϕ0∆
2 = 12L2

rB/A is
independent of U0 but depends on λ.
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5 Results and Discussion

To carry out this study, many conditions are in-

troduced (i) for model components, our assumption is

isothermal electrons and cold fluid of ions and dust

grains[38] (ii) the gravitational effect is neglected for sub-

micron dusty grains[38−39] (iii) the plasma is of low cou-

pling parameter (iv) inter-grain distance is very small.

By applying reductive perturbation theory, introduced

by Taniuti and Wei (1968),[34] this plasma model leads

to a 3D-CKP equation (11). Now we discuss effects of

system parameters on the feature of dust ion acoustic

soliton solution using mesospheric parameters.[40−43] The

dependence of solitons features i.e. wave phase velocity

λ, soliton amplitude and width ϕ0 and ∆ on the var-

ious parameters ρ (unperturbed number densities ratio

ρ = ni0/ne0), µ (normalized ion to negative dust mass

ratio µ = Znmi/mn), α (normalized ion to positive dust

mass ratio α = Zpmi/mp), η (normalized charge number

of positive dust η = Zpnp0/ne0) and ν (normalized charge

number of negative dust ν = Znnn0/ne0) are investigated.

Also, the geometric effect on the acoustic waves is consid-

ered. Figures 1 and 2 show the variation of the phase

velocity λ against ν, η, α and µ. It is clear that λ is

elevated with ν, α and µ but is reduced with η.

Fig. 1 The change of λ against ν for various values of
η and for α = 0.002, and µ = 0.005.

Fig. 2 The change of λ against µ for various values of
α and for ν = 1 and η = 1.5.

Fig. 3 Variation of the amplitude ϕ0 against Lr and η
for α = 0.002, µ = 0.005, and ν = 1.5.

Fig. 4 Change of amplitude ϕ0 against Lr and η for α
= 0.002, µ = 0.005, and ν = 1.1.

Fig. 5 Change of amplitude ϕ0 against Lr and η for
α = 0.002, µ = 0.005, ν = 1.1, and (a) U0 = 0.95; (b)
U0 = 0.4.
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Fig. 6 Change of the amplitude ϕ0 against µ for differ-
ent values of ν and for α = 0.002, Lr = 0.5, η = 1.3, and
(a) U0 = 0.95; (b) U0 = 0.4.

Fig. 7 Change of width ∆ against Lr and ν for α =
0.002, µ = 0.005, η = 1.5, and U0 = 0.5.

Figure 3 exhibits the variation of soliton amplitude ϕ0

with Lr and η. Clearly, this model supports both rarefac-
tive and compressive solitons, depending on sign of non-
linear coefficient A, compressive type exists if A > 0 while
rarefactive for A < 0. More specifically, plots of soliton
amplitude ϕ0 and ∆ (width) against η, U0, Lr, and ν are
depicted in Figs. 4–8. The soliton amplitude ϕ0 of both
compressive and rarefactive wave increases with Lr and η,
as shown in Fig. 4. Accordingly, Lr and η lead to reduce
the pulse amplitude ϕ0. Also, the soliton amplitude ϕ0

of compressive soliton decreases with ν but increases with
Lr, µ, and η up to a certain value (Lr = 0.55), then ϕ0

begins to decrease with η. While the soliton amplitude ϕ0

of rarefactive soliton decreases with ν and µ and increases
with Lr and η as depicted in Figs. 5 and 6.

Fig. 8 The change of the width ∆ against U0 for differ-
ent values of Lr and for α = 0.002, µ = 0.005, ν = 1.5,
and η = 1.5.

Fig. 9 Three-dimensional solitary wave profile ϕ (14)
against R and Θ at T = 0.5 and Z = 0.5 and for Lr = 0.9,
α = 0.002, µ = 0.005, ν = 1.5, η = 1.5, and (a) U0 = 0.3;
(b) U0 = 0.6.

Fig. 10 Three-dimensional solitary wave profile ϕ (14)
against R and Θ at T = 0.5 and Z = 0.5 and for Lr = 0.9,
α = 0.002, U0 = 0.5, µ = 0.005, ν = 1.5, and η = 1.5.
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Fig. 11 Three-dimensional solitary wave profile ϕ (14)
against R and Z at T = 0.5 and Θ = 0.2 and for Lr = 0.9,
U0 = 0.2, α = 0.002, µ = 0.005, ν = 1.5, and η = 1.5.

On the other hand, Figs. 7 and 8 show the soliton
width ∆dependence on ν, Lr and U0. It is seen that ∆
increases with ν whereas it decreases with both Lr and
U0. It is shown that ν makes the solitary profile much
wider. According to soliton picture.[44−45] Figures 9–11
display ϕ in Eq. (14) with Θ, R and Z, and T . It is noted
that, soliton deviates towards the positively radial axis
with increasing time and this cannot occur on neglecting
Z and Θ coordinates. The DIA soliton is shown in Fig. 9

with R and Θ for two values of U0 = 0.3 and = 0.6. It

is seen that how DIA amplitude varies with U0. The one

dimensional model cannot explain such behavior.

Summing up, we have studied DIASWs propagation in

plasma with isothermal electrons, mobile cold ions, pos-

itive and negative dust grains considered cylindrical ge-

ometry. The angular and radial dependence have been

considered. Employing the (RP) technique, a 3D-CKP

equation which describes the evolution of DIASWs has

been derived and its localized solution has been obtained

by reducing the 3D-CKP to the Korteweg-de Vries equa-

tion on employing a simple transformation of the coor-

dinates. The effects of system parameters (ν, η, µ, Lr

and U0) on phase velocity λ, soliton amplitude ϕ0, and

width ∆ have been examined numerically. We have shown

graphically that these parameters play a vital role in the

formation and the features of the DIA mesospheric solitary

waves.[38,46−47] These results agree with the mesospheric

plasma information, see Refs. [46–47]. Finally, our investi-

gation of the solitary wave properties could be important

in understanding nonlinearity features in space, as well

as in laboratory and astrophysical environments in meso-

spheric plasma.
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